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Foreword1

This book is a survey on the state of the art in block cipher design and analysis. It is work in2

progress, and it has been for the good part of the last three years – sadly, for various reasons3

no significant changes habe been made for about one year and a half, and only recently I have4

started updating some parts again.5

However, it is also in a self-contained, useable, and relatively polished state, and for this reason6

I have decided to release this snapshot onto the public as a service to the cryptographic com-7

munity, both in order to obtain feedback, and also as a means to give something back to the8

community from which I have learned much.9

At some point I will produce a final version – whatever being a “final version” means in the10

constantly evolving field of block cipher design – and I will publish it. In the meantime I hope11

the material contained here will be useful to other people.12

Roberto Avanzi13

Munich, August 201714
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Introduction1

Einstein, the most creative physicist since Newton, is one of my heroes. I wrote a book on2

relativity to teach myself the theory.3

Martin Gardner4

The topic of this book is the state of the art in block ciphers. These are, together with the closely5

related permutations, arguably the best understood primitives in the field of symmetric cryp-6

tography: Over the course of more than four decades, solid theoretical foundations have been7

developed and as a result several established design principles are now available to the cryptog-8

rapher to construct block ciphers resistant against all known attacks. At the same time, many9

challenges are still as interesting as ever, if not more: for instance to as compact as possible or10

to minimise latency, while at the same time taking no compromises in regard to security; to11

develop new and better attacks to break existing ciphers; and to invent new designs or design12

methodologies.13

The purpose of this book to get a comprehensive overview of the research done so far in this huge14

and complex field. Only cryptographic methods whose details have been publicly disclosed15

are reported here, and all information contained herein comes from openly available sources,16

except for the occasional explanation obtained by private communication from the authors of17

a design or an attack.18

The focus of this book is on ciphers whose design criteria have been carefully analysed by the19

cryptographic community, as well as on historically relevant ciphers whose design criteria have20

proven influential, recent developments, and off-the-beaten-path designs.21

The main design types of block ciphers are discussed, as well as the cryptanalytic techniques22

used to assess their security. This information has been put into its proper historical context23

as well, for instance the rationale for new designs, and the way a cipher influenced successive24

cryptographic algorithms.25

It is very difficult to talk about design without talking about cryptanalysis, and one cannot26

discuss cryptanalysis without referring to at least some specific design techniques. In fact, one27

cannot talk about one without discussing the other, since the best way to learn how to design28

block ciphers is by breaking them. Block cipher analysis is driven by the concrete instances29

of the designs themselves, and therefore it is advisable to consider concrete examples when30

studying cryptanalytic techniques. For an intrinsically linear document such as a book this31

is quite an annoying circular reference situation. Still, a separation of the subjects of design32

and cryptanalysis, even if at times somewhat arbitrary, is necessary, especially in a work of33

reference. A constant intermixing of design principles, ciphers, and analysis would only make34

the exposition confusing. Therefore, we treat these subjects separately: The first two chapters35

will be on design (Chapter 1 on page 21) and on cryptanalysis (Chapter 2 on page 73), and36

only after this we shall move to a discussion of several concrete ciphers that have marked the37

history of the last three decades of block cipher design (Chapter 3 on page 127). However, some38

cryptanalytic concepts are mentioned already in the design chapter to provide context.39

This is not a self-contained treatise on the subject matter. We do not define complexity classes.40

We do not discuss adversarial models. We do not treat modes of operation. We are also sparse41
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on the mathematical background. There are excellent books and lecture notes out there for all1

this stuff. It is assumed that the reader will either know or learn the necessary mathematical2

background as necessary.3

This document is not a textbook nor an encyclopaedia on block ciphers. It is not meant as a4

replacement for Lars Knudsen and Matt Robshaw’s excellent book The Block Cipher Compan-5

ion [KR11]. In fact, it is advisable to have The Block Cipher Companion on the desk beside the6

present one to properly understand the designs documented here.7

It also is part of the learning process of its author, so a particular balance in exposition is not8

necessarily to be expected, even though we attempt to present the information in a uniform9

way. In fact, the document originates from my own (LaTeX-ed) notes while I was learning10

block cipher design and cryptanalysis, as part of my work at Qualcomm after Greg Rose left11

the company.12

More than 80 block ciphers are described – to variable level of detail – from the DES to al-13

gorithms disclosed in early 2014. The advantages and disadvantages of these ciphers, their14

weaknesses, the types of attacks, and their performance have been compared whenever there15

was publicly available information about them. Performance comparisons are mostly in HW16

and in SW onmicro-controllers, but also general purpose CPUs are briefly considered for a few17

ciphers. Full references are given for all information collected here.18

Even though in some cases I aimed at completeness, there are areas where completeness is19

difficult or impossible to achieve. In particular, this applies to intellectual property. I have tried20

to determine the intellectual property situation for all the ciphers that I have described, but in21

some case it was not possible to determine whether aspects of a given cipher were patented22

or not. In some cases the information is just not easy to find. In no case there is warranty23

(explicit or implied) about the correctness of information regarding intellectual property, or in24

fact any information contained here. Readers that needs conclusive evidence should talk to a25

legal counsel and have a patent search performed on their behalf.26

I also want to thank Sergey Agievich, Billy Bob Brumley, Cameron McDonald, Greg Rose,27

Markku-Juhani Olavi Saarinen and Benoît Viguier for reporting typos, providing precious ma-28

terial and many valuable suggestions. Any error is my fault only, nobody else is responsible.29

Since one should never stop learning, this document is by necessity also a work in progress. As30

such, I am always looking to improve this document, and any polite suggestion is encouraged.31

Please use the following email address to inform the author about errors and inaccuracies, and32

send suggestions for improvements and updates: roberto.avanzi@gmail.com. All con-33

tributions will be acknowledged.34

Roberto Avanzi35

Munich, August 201736
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Notation1

We attempt to maintain a consistent notation throughout the document. The following nota-2

tions hold except when explicitly stated otherwise. Accordingly, in several cases our descrip-3

tions of ciphers and attacks have been modified with respect to the reference papers. Another4

convention is in the numbering of rounds: we usually start with round 0, and the descriptions5

of some ciphers have been modified not only to adhere to the notation set below, but also to6

our round numbering.7

𝒜 , ℐ , 𝒦 , 𝐾[ℐ ] and ⟨𝐴, ℐ ⟩ : The symbols𝒜 ,ℐ , and𝒦 denote set of key bits, usually to extract8

a partial key from a key, for instance as in 𝑘1 = 𝐾[ℐ ].9

Key bit sets are identifiedwith vectors whose entries are equal to one for the included bits10

and zero otherwise. Hence, for a vector 𝐴 of length ℓ over 𝔽2 and a subset ℐ of [0..ℓ − 1],11

the notation ⟨𝐴, ℐ ⟩ shall denote the sum (parity) of the bits in 𝐴 at the fixed positions12

indexed by the numbers in ℐ , i.e. the parity bit of the corresponding choice of bits.13

𝒜𝒾 : Algebraic immunity of a Boolean function.14

𝑏 : Where different from the key size 𝑛, 𝑏 is used to denote the block size.15

ℬ : The branch number of a linear mapping.16

𝐶 : A ciphertext (also in derived forms such as 𝐶𝑖, 𝐶′, etc.).17

𝔠, 𝔢 : In the F-Function of a DES-like cipher, the compression and expansion blocks, that follow18

and precede the key mixing, respectively.19

𝐷, 𝐸 : 𝐸 is normally used to denote an encryption function, inwhich case the letter𝐷 represents20

the corresponding decryption function.21

This applies also to indexed or accented variants, i.e. the inverse of 𝐸𝑖, resp. 𝐸(1), �̂�, and22

𝐸′ is denoted by 𝐷𝑖, resp. 𝐷(1), �̂�, and 𝐷′, etc.23

For all other letters the inverse of a function 𝑓 is denoted by 𝑓 −1.24

𝐷, 𝑆, 𝑇 : When analysing space-time tradeoffs, these are shorthands for (collected) data, run-25

time space (or storage) and running time, usually in conjunction with 𝑁 = 2𝑛 for the state26

(and key space) cardinality.27

𝛥, ∇ : Used to denote input, output, state, or key differences / (higher order) differentials.28

𝛿𝑖 : 𝛿𝑖 is often used as a shorthand for 𝛥𝑃𝑖.29

𝛿𝐹 : The differential immunity of a function 𝐹.30

𝑓 , 𝐹 : 𝑓 can be a generic function, often a Boolean function. In the context of the latter case, 𝐹31

is used to denote a vectorial Boolean function.32
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𝐹 : The F-Function of Feistel ciphers or generic random permutations in Even-Mansour con-1

structions.2

𝔽 : A finite field. 𝔽𝑎 denotes the finite field with 𝑎 elements, as in 𝔽2. 𝔽28 , 𝔽17 etc.3

𝛾, 𝜆, 𝜋, 𝜓, 𝜌, 𝜎 , 𝜃 : In the wide trails design strategy, these greek letters denote respectively: a4

non-linear transformation, a linear transformation, aword permutation, the key schedule,5

the round function, a key addition, and a layer of S-boxes.6

𝐾, 𝑘, 𝑟𝑘, 𝑤𝑘 : The letter 𝐾 denotes (master) keys, such as 𝐾, 𝐾𝑖, 𝐾′ etc.7

The lower case 𝑘 denotes subkeys and round keys 𝑘𝑖, which are usually derived from a8

master key 𝐾. It is sometimes used also in composite symbols, such as 𝑟𝑘 for a round key,9

𝑤𝑘 for a whitening key, etc.10

𝐿, 𝑅 : In the context of Feistel ciphers the left and right halves of a state, respectively.11

ℓ : Use to denote the length of the key or of the keys used in a cipher, when different from the12

block size 𝑛.13

ℳ, 𝒩 : Sets.14

ℳ𝑑 : Set of all sequences which consist of 𝑑 elements of a set ℳ.15

𝑛 : When studying block ciphers, 𝑛 is used to denote the block length of the cipher; when study-16

ing S-boxes 𝑛 often denotes the S-box size. In cryptographic schemes which explicitly use17

more than one key 𝐾1, 𝐾2, etc. that by design are not considered as a sub keys of a larger18

key, 𝑛 usually denotes the size of each of these keys. In these cases 𝑁 = 2𝑛.19

𝑛 : In a few cases 𝑛 denotes the length of a vector, especially when the state of a cipher is rep-20

resented as a vector of 𝑛 elements over a given algebraic structure. Used when studying21

diffusion layers and wide-trail designs.22

𝑛𝑙 : The nonlinearity of a (vectorial) Boolean function.23

𝒪 : Encryption or decryption oracle.24

𝑃 : Usually a plaintext (including derived forms like 𝑃𝑖, 𝑃′, etc.), or a permutation (P-box).25

𝒫 : Probability.26

𝑃𝑓 (𝛼, 𝛽) : is defined as27

• 𝒫 [𝑓 (𝛼) = 𝛽] in the case of linear cryptanalysis;28

• 𝒫 [𝑓 (𝑥) + 𝑓 (𝑥 + 𝛼) = 𝛽] in the context of differential cryptanalysis; and29

• 𝒫 [𝛥(𝑖)
𝛼 𝑓 (𝑥) = 𝛽] where 𝛼 = (𝛼1, … , 𝛼𝑖), for higher order differential cryptanalysis.30

𝑟 : The number of rounds of an iterative cipher.31

ℝ : The field of real numbers.32

18
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𝑆 : Commonly used to denote S-boxes in the description of ciphers.1

wt(𝑎) : The Hamming weight of the number, finite field element, or vector 𝑎, i.e. the number of2

non-zero bits, or elements, of its argument.3

𝓌 : For a function 𝑓 , its Walsh transform/spectrum is denoted by 𝑓 𝓌.4

ℤ : The ring of the integers. The notation ℤ/𝑛ℤ is used for the ring of integers modulo 𝑛.5

̄: For a bit string 𝑎, ̄𝑎 denotes the bitwise complement of 𝑎.6

⊕ : Bitwise exclusive or, or XOR.7

∧ and T : Logical (bitwise) AND. T is used in diagrams.8

∨ and U : Logical (bitwise) OR. U is used in diagrams.9

⊞ and ⊟ : Modular addition and subtraction, respectively (especially in diagrams).10

∘ : Functional composition where by the notation 𝑔 ∘ 𝑓 it is understood that 𝑔 follows 𝑓 , i.e.11

(𝑔 ∘ 𝑓 )(𝑥) = 𝑔(𝑓 (𝑥)).12

∗, ⊛, ⊚ and ⊙ : Various compositions of values.13

‖ : Concatenation of bit strings. Often used for states of Feistel constructions. For matrices 𝑀114

and𝑀2 with equal number of rows, 𝑀1‖𝑀2 denotes the matrix obtained by juxtaposition15

(also written as (𝑀1|𝑀2)).16

≪ 𝛼, ≪𝛼 : Left shift by 𝛼 bits (zero-filled).17

≫ 𝛼, ≫𝛼 : Right shift by 𝛼 bits (zero-filled).18

⋘ 𝛼, ⋘𝛼 : Left rotate by 𝛼 bits.19

⋙ 𝛼, ⋙𝛼 : Right rotate by 𝛼 bits.20

∪, ∩, ∖ : Set theoretic union, intersection, and subtraction.21

# : The cardinality of a set.22

∅ : The empty set.23

[𝑎..𝑏] and [𝑛] : [𝑎..𝑏] is the set of integers from 𝑎 to 𝑏; [𝑛] is a shorthand for [1..𝑛].24
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Chapter 11

Design2

Lots of people working in cryptography have no deep concern with real application issues.3

They are trying to discover things clever enough to write papers about.4

Whitfield Diffie5

In 1883 Auguste Kerckhoffs published two papers in La Cryptographie Militaire [Ker83a, Ker83b]6

in which he stated six axioms of cryptography. In modern words, these axioms can be sum-7

marised as: can be summarised as:8

1: The system must be mathematically and physically indecipherable;9

2: It must not rely on on secret algorithms or parameters;10

3: It must be easy/efficient to transmit the key and change it;11

4: It must be applicable to telecommunications;12

5: It must allow lightweight implementations; and13

6: It must be user friendly and its use must not require technical prowess.14

Wewant to focus our attention on the second axiom, now known asKerckhoffs’ Principle. The15

original text is16

Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les mains de17

l’ennemi.18

which, in English, translates as:19

It [the method] must not be required to be secret, and it must be able to fall into the enemy’s20

hands without inconvenience.21

This principle implies that the security shall rely only on the secrecy of the key. It is also known22

as Shannon’s Maxim after Claude Shannon who formulated it as “the enemy knows the system.”23

This is in fact the most important design principle for any cipher, not only block ciphers, but24

also stream ciphers, or even public key cryptosystems: avoid secret designs or design principles.25

We strongly believe that obscurity does not bring security: Not only does peer scrutiny lead to26

better ciphers, but obscurity often gives a false sense of security, leading to design mistakes.27

Bruce Schneier argues in a CRYPTO-GRAM newsletter [Sch02]1 that Kerckhoffs’ papers are28

probably the earliest papers that support the non-secrecy of cryptographic algorithms.29

1See also [Coh87], Chapter 2.1 “A Short History of Cryptography”.

21



CHAPTER 1. DESIGN

Kerckhoffs’ Principle does not only apply to the “blueprints” of a cryptographic algorithm, but1

also to themethods used to determine any constants used in the system. When the USNational2

Bureau of Standards (NBS) introduced the Data Encryption Standard, it was known that the3

USNational Security Agency (NSA) had changed some of the hardwired constants. At the time4

there was suspicion that this was done to insert a mathematical backdoor into the system – and5

if the NSA had it, somebody else could also find it.6

It was later disclosed that this was not the case – in fact it was later disclosed that thesemodifica-7

tions strengthened the cipher against differential cryptanalysis, an attack that was not publicly8

disclosed at the time – but this was sufficient to cast doubts on the cipher. For this reason9

several recent cryptographic methods contain nothing up my sleeve numbers, i.e. values ob-10

tained in away that is “above suspicions,” for instance from the binary expansions of important11

mathematical constants such as 𝜋, 𝑒, 𝜑, etc.12

Even though we do not endorse it, secrecy can have a value for security agencies, since they13

would keep their algorithms and machinery secret in order to not teach their adversaries by14

exposing their own their cutting-edge technology. In this case, extensive analysis is performed15

in-house, and in the case of the NSA it can be argued to be at the highest level. This still made16

perfect sense, even in light of Kerckhoffs, when the the NSA’s technology was cutting edge,17

for instance, when the S-boxes of the DES were constructed, or when Skipjack (Section 3.14 on18

page 166) was developed. This has changed recently, as public knowledge seems to have caught19

or surpassed that of the security agencies, and acknowledged by the public release of ciphers20

such as Simon and Speck.21

In the following sectionswewill formalise concrete design principles andmethodologieswhich22

are specific to block ciphers. The material is roughly organised in four parts:23

1: In Section 1.1 we introduce fundamental concepts, such as the definitions of block cipher,24

product and iterated block ciphers, rounds, key schedule, avalanche, confusion, diffusion25

and the security reduction principle.26

2: Sections 1.2 to 1.7 describe the main design topologies and components of block ciphers,27

namely substitution-permutation networks, Feistel ciphers, Lai-Massey designs, etc.28

3: Sections 1.8 and 1.9 deal with themain building blocks of block ciphers, that is the functions29

that provide diffusion and confusion.30

4: Finally, the last section serves as a sort of appendix to this chapter, collecting information31

about less common design types and building blocks.32

1.1 Fundamental Definitions and Design Principles33

A block cipher is an algorithm that applies a permutation, selected by a key, to the set of34

all blocks (bit strings) of a fixed length. Usually the application of the permutation is called35

encryption and converts a plaintext into a ciphertext, while the inverse permutation is called36

decryption and converts a ciphertext into the original plaintext. Computing the algorithm and37

its inverse usually have identical or similar costs.38

A classical definition of security for a cipher is that it considered secure when it is not feasible39

to determine the key, even with a large set of plaintext/ciphertext pairs at disposal.40

22
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A more modern security notion is based on the concept of (computational) indistinguishability.1

Informally, two systems 𝒮 and 𝒯 are said to be indistinguishable if no (efficient) algorithm2

𝒟(⋅) – called a distinguisher – that can be connected either to 𝒮 or 𝒯 , is able to decide with3

which of the two systems it is interacting. Then, a block cipher 𝐸(𝐾, ⋅) is secure if it and and4

its inverse 𝐷(𝐾, ⋅) for a uniformly random key 𝐾 are indistinguishable from a truly random5

permutation 𝜋 and its inverse 𝜋−1 Indistinguishability is also for reductions: it two systems6

are indistinguishable, then one is secure when the other one is secure as well.7

Recently, the standard definition seem to have settled on the stronger concept of indifferentiabil-8

ity [MRH04, CDMP05]. Here we shall not make use of the technical original definition, but an9

equivalent and more informal one is the following: Two systems 𝒮 and 𝒯 are indifferentiable10

if and only if the security of any cryptosystem using 𝒯 as a component is not affected when 𝒯11

is substituted by 𝒮 . In particular, a block cipher is secure if it is indifferentiable from an ideal12

one. It is clear that this concept of security implies that no key recovery is possible.13

Ideally, the best attacks against a block cipher should not run considerably faster than brute14

force on the key space. For instance, it is necessary that a block cipher, unlike, say, Caesar’s15

cipher, does not show any kind of linearity. Caesar’s cipher can be interpreted as modular16

addition of a secret key. Whereas brute force search requires on average 13 attempts before17

guessing the correct key, a known plaintext attack determines the secret key with just one en-18

cryption operation and a modular subtraction. Linearity also exposes biases in the distribution19

of the characters in the plaintext through the ciphertext: Taking again Caesar’s cipher as an20

example, if we know that the plaintext is in English and the most common character in the21

ciphertext is “g”, then we can guess it to be the encryption of the letter “e” and thus the secret22

key is probably 2.23

In fact, a block cipher should not be approximable by any easily computable function of the24

input with a nonnegligible bias. This includes linear or affine functions as a special case, and25

there are countless ways to represent the states of a cipher: the most common way is to see26

them as vectors over 𝔽2, but we can also view the bytes of the states as integers modulo 256, or27

elements of the Galois field 𝔽28 .28

Apart from non linearity, another desirable property is the avalanche effect, which means that29

a small change in either the key or the plaintext should induce a drastic change in the ciphertext.30

This was formalised by A. F. Webster and Stafford Tavares as the Strict Avalanche Criterion31

(SAC) [WT85]: Complementing a single bit in the input or in the key should change any bit in the output32

with probability 1/2, for any input or key bit and for any output bit.33

In order to achieve these goals we could take a table of random permutations: For block and34

key lengths of 𝑛 and ℓ bits, we just pick at random 2ℓ permutations of the elements of the 𝑛-35

dimensional vector space over 𝔽2. But such a table would be huge for any acceptable security36

level – andwe are not yet taking into account the difficulty to obtain a good randomness source.37

Hence, a block cipher is constructed by chaining simpler operations, which are individually38

weak, but combined form a much stronger function. Such a cipher is called a product cipher.39

Claude Shannon first formalized this approach in [Sha49]. The encryption algorithm of a prod-40

uct block cipher is a sequence of rounds, where the input to the first round is the plaintext, the41

output of each round is passed to the following round as its input, and the output of the last42

round is the ciphertext. Each round is a simpler cipher itself, i.e. it accept as one of its inputs43
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Figure 1.1: A Product Block Cipher
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also a key, called the round key, which is derived from the encryption key.1

Hence, a block cipher can also be defined as a triple (instead of a pair) of algorithms, namely,2

encryption, decryption and key schedule, also called key expansion. The latter is the process3

of expanding the given secret key into a set of values used in different places of the encryption4

and decryption algorithms. If the key schedule is considered as a separate algorithm, then en-5

cryption (resp. decryption) is redefined as an algorithm that takes as inputs the plaintext (resp.6

ciphertext) and the outputs of the key schedule and outputs the ciphertext (resp. plaintext). The7

encryption part of the cipher is sometimes called the data (obfuscation) path, as depicted in8

Figure 1.1. These definitions are also useful when the key schedule process is computationally9

expensive and it thus it makes sense to separate it from encryption and decryption when the10

same key is used repeatedly.11

In order to simplify the construction of concrete proposals, Shannon also suggested to build12

a product cipher by repeating the same steps over and over until the desired robustness is13

achieved. Intuitively, increasing the number of rounds improves the security of a cipher at the14

expense of speed and, conversely, reducing the number of rounds can improve performance at15

the expense of security.16

The resulting cipher is called an iterated (product) cipher. The internal state of the cipher is17

initially the plaintext. Each iteration of the round updates the state, i.e. it replaces the state with18

its output. The ciphertext is then just the final state.19

The operations that are used to build the rounds should provide confusion and diffusion. To20

quote Shannon [Sha49]:21

Two methods (other than recourse to ideal systems) suggest themselves for frustrating a sta-22

tistical analysis. These we may call the methods of diffusion and confusion.23

Diffusion means that the statistical structure of the plaintext is dissipated in the long range24

statistics of the ciphertext. That is, each part of the ciphertext should depend on as much of the25

plaintext as possible. Inside a plaintext block, diffusion is attained by means of state permuta-26

tion operations.27

Confusion means that the key is used in such a way that even when an attacker knows the28

statistics of the plaintext, or hasmany plaintext/ciphertext pairs, it is still difficult to deduce the29

key. In Shannon’s understanding, each part of the ciphertext should depend on as much of the30
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key as possible. This can be attainedwhen themathematical dependence of the ciphertext from1

plaintext and key is very complex, for instance by repeatedly using non-linear functions to mix2

the state with the round keys. One way to improve the mixing of plaintext and key, especially3

in the presence of keys larger than the plaintext block, is to use a complex key schedule.4

At this point it is noteworthy to remark a fundamental difference between block ciphers, on5

one side, and stream ciphers, the One Time Pad (invented by Frank Miller in 1882 [Mil82] as6

shownby StevenM. Bellovin in [Bel11]), and theVernamCipher [Ver26] on the other side: Block7

ciphers build their security on both confusion and diffusion, whereas the other types of ciphers8

rely exclusively on confusion to achieve security.9

Shannon introduced two further design principles:10

1. The first is called reduction: make the security of the system reducible to some known dif-11

ficult problem. This principle has been used widely in public-key cryptography, much less12

so in secret-key cryptography.13

2. Shannon’s second principle is very pragmatic: make the system secure against all known attacks.14

For secret-key ciphers this is still the best known design principle. Indeed, in the words of15

Bruce Schneier [Sch98b]: “The only way to become a good algorithm designer is to be a good crypt-16

analyst: to break algorithms. [...] Only after a student has demonstrated his ability to cryptanalyze17

the algorithms of others will his own designs be taken seriously.” Humility is also necessary in18

this endeavour, since, again in the words of Bruce Schneier [Sch98a]: “Anyone, from the most19

clueless amateur to the best cryptographer, can create an algorithm that he himself can’t break.”20

We shall put the second principle into practice in an exemplary way after we have discussed21

Substitution-Permutation Networks (SPNs), a large family of block ciphers. This will allow us to22

understand how some common attack strategies work, and also how a cryptographer hedges23

her designs against these attacks. The latter will directly translate to concrete requirements of24

the building blocks used in the construction of such a cipher. Since SPNs comprise almost all25

block cipher types encountered in practice, this will be general enough to set the ground for26

later, more in-depth treatments.27

1.2 Substitution-Permutation Networks28

Shannon suggested the use of two logically separated types of functions to achieve confusion29

and diffusion in a product cipher. A substitution function or substitution layer provides con-30

fusion, whereas a diffusion layer provides diffusion. This functional separation of the devices31

that provide confusion and diffusion allows to construct the rounds from simpler operations32

that can be analysed mathematically on their own terms. This principle also leads to a certain33

minimalism in the design approach and in its analysis, which has proven to be beneficial for se-34

curity: Indeed, most designs that have better withstood cryptanalysis are very regular designs35

built from simple blocks, whereas many an apparently clever design that mixed different types36

of complex and obscure operations has been broken in a surprisingly short time.37

The substitution function (also: confusion function, confusion layer) can be represented as a38

table mapping state values to other values, but the actual implementation can be different, for39

instance a simple circuit or a short program using non-linear operations. This function is some-40

times called an S-box. Today, the name S-box is usually refers to a simple non-linear operation41

25



CHAPTER 1. DESIGN

Figure 1.2: Simple Substitution-Permutation Networks

A simple SPN with a KSP round and without final representation is depicted to the left.

The SPN to the right is equivalent, provided that the permutation layer is ⊛-linear, in which
case round key 𝑘′

𝑖 is the inverse image of 𝑘𝑖 under the 𝑖th permutation function.
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thatmodifies just a part of the state, and the full substitution layer consists of piecewise, parallel1

applications of several S-boxes (not necessarily distinct from each other) to its input. Means to2

achieve confusion will be discussed in Section 1.9 on page 56.3

The permutation layer or diffusion layer is sometimes called a P-box. The permutation layer4

can be realised by a simple fixed permutation of the bits of the state, or more general invertible5

linear transformation of the state as a vector over some ring. (There is nothing in principle that6

prevents non-linear diffusion layers.) Diffusion will be discussed in Section 1.8 on page 42.7

A combination of these two operation types together with mixing of key derived material con-8

stitutes a round of a Substitution-Permutation Network (also SP Network or SPN).9

Simple functions cannot be expected to bring much confusion and diffusion, but if sufficiently10

many such functions are suitably chained, the resulting iterated cipher can achieve very high11

levels of confusion and diffusion, until the avalanche effect is reached.12
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Two variants of the modern generic scheme of a SPN are depicted in Figure 1.2 on the preced-1

ing page, where the reader can immediately note how the general idea of product cipher (as2

presented in Figure 1.1 on page 24) is implemented.3

Several variants are possible, for instance there can bemore substitution and permutation layers4

in each round. If S denotes a substitution layer, P a permutation layer, and K a key mixing layer,5

them the rounds in Figure 1.2 are of type SPK, with the final round being just SK. Key mixing6

usually follows the substitution and permutation layers, but there are ciphers where the key7

mixing is defined as being at the beginning of a round, in which case it is the final round that8

consists of just key mixing. In some ciphers key material is mixed more than once per round,9

such as the KSKP round type used in the SAFER family (Section 3.8 on page 150). Other ciphers10

other can have very complex rounds built out of several simple layers: for instance ICEBERG’s11

round structure (Section 3.24 on page 197) is SPSPS-PKP.12

An important remark is that placing substitution and permutation layers at the very beginning13

or end of a cipher (even though it may facilitate implementation) does not increase security,14

because they are fixed modifications of the plaintext or ciphertext. Therefore it is a sensible15

design decision to ensure that key mixing instead occurs at the very beginning and very end of16

the cipher. (This is related to the FX construction, cf. Section 1.6 on page 38.)17

Returning to Figure 1.2 (left), the initial key mixing is called the initial round2. Several addi-18

tional rounds composed of substitution and permutation layers and key mixing follow. Only19

the final round may sometimes omit the permutation layer, since it is often simply a linear op-20

eration, and omitting it is equivalent to mixing a different, linearly transformed round key, at21

the end of the round. Again, for ease of implementation or for design reasons the permutation22

layer may be present in the last round in a simplified form (such as in SQUARE, cf. Section 3.1123

on page 160, and its successors, including the AES, cf. Section 3.20 on page 182).24

For this type of ciphers, if the permutation layer is linear (that is 𝑃(𝑥⊛𝑦) = 𝑃(𝑥)⊛𝑃(𝑦)), then de-25

cryption can be implemented with a similar control structure as the encryption, i.e. the inverse26

of the circuit to the right is used to invert the circuit to the left: It will still be necessary to reverse27

the order of the round keys and to linearly transform some of them, and possibly add control28

logic to choose whether to use the inverse substitution and permutation layers for decryption,29

but resources can be saved. A further development of this intuition is part of the Wide Trail30

design strategy (Section 1.4 on page 34) and in particular of involutory ciphers such as Khazad31

and Shark (Subsection 3.21.2 on page 190) and Anubis (Subsection 3.21.3 on page 192).32

Keymixing is usually a simple operation, and in most cases it performed by a XOR. The second33

most popular operation is modular addition, as in GOST (Section 3.4 on page 140), RC2 (Sec-34

tion 3.5 on page 142), RC5 (Section 3.10 on page 158), TEA (Section 3.12 on page 161), Twofish35

(Section 3.13 on page 164), RC6 (Section 3.15 on page 168), SEA (Section 3.26 on page 199),36

Threefish (Section 3.30 on page 207), and BelT (Section 3.33 on page 214) – to name just a few37

examples. In software, modular addition is often as expensive as XOR, so it is an inexpensive38

way to improve diffusion and confusion. This is not always true as in some ciphers there may39

be optimisations relying on the use of XOR that would not be possible if a different operation is40

used. Also, in hardware addition is always more expensive than XOR, as the increased latency41

of addition is not hidden by the pipeline of the CPU. Some ciphers usemore than one operation42

2Sometimes the initial and final key additions are derived from additional key material, in which case we have
the so-called whitening, cf. Section 1.6 on page 38.
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to mix the subkeys with the state. For instance, in IDEA (Section 3.6 on page 144) and MESH1

(Subsection 3.6.6 on page 147) additionmodulo 216 andmultiplicationmodulo 216 +1 are used,2

and in the CAST (Section 3.7 on page 148) and SAFER (Section 3.8 on page 150) families both3

XORandmodular addition/subtraction are used. SHARK (Subsection 3.21.2 on page 190) takes4

an even more interesting approach, as key mixing is done both by simple XORs and an affine5

transform, i.e. the multiplication by a matrix that is derived from key material.6

Most of the block cipher designs ever proposed and nearly all those that are in use today are7

SPNs. Some of the designs that are often presented as belonging to a different family, such8

as Feistel networks (Section 1.3) or Lai-Massey designs (Section 1.5 on page 37), are in fact just9

particular types of SPNs: Indeed, in the early history of block ciphers the term SPN was used10

in works describing Feistel designs, such as [Ada90, AT93], and until recently it was not uncom-11

mon to state that a cipher “uses the Feistel structure [...] to implement the SPN” [Ada97]. Today12

Feistel Networks and SPNs are treated as separate design families: when a cipher is clearly a13

Feistel or Lai-Massey design, it is denoted only as such and rarely referred to as an instance14

of a SPN, whereas SPN usually denotes a narrower class of ciphers such as bricklayer designs15

following the Wide Trail strategy (Section 1.4 on page 34). More examples of “classic” SPNs16

are given by SQUARE (Section 3.11 on page 160), Serpent (Section 3.17 on page 170), Rijndael17

(Section 3.20 on page 182), mCrypton (Section 3.25 on page 198) and PRESENT (Section 3.29 on18

page 206).19

1.3 Feistel Networks (Luby–Rackoff Ciphers)20

A SPN as described in Section 1.2 on page 25 often needs two different circuits or routines21

to perform both encryption and decryption. Even if they can be optimised somewhat (as we22

saw when comparing the two example designs of Figure 1.2 on page 26), the issue can still23

adversely impact performance tradeoffs in resource constrained environments. An elegant so-24

lution to this problemwas presented in the late 60s by IBM cryptographerHorst Feistel. During25

the development of the Lucifer family of block ciphers he invented a structure that allows iter-26

ated ciphers to be built in a way such that encryption and decryption are essentially the same27

operation.28

Feistel’s idea, in its simplest form, constructs a round as follows: The state is split into two29

halves, called branches; a function, called the F-function, is computed on the first half, called30

the source branch; the result of this operation is composedwith the other half of the state, called31

the target, in a reversible way – the source branch remains unchanged until now; finally, the32

two branches are swapped.33

For the composition of the transform of the source to the target, usually the XOR is used because34

the effect of XORing with some value is reversed by XORing again with the same value, but, as35

we mentioned in the previous section, other composition operations may be used.36

Let the state be written as 𝐿‖𝑅, as the concatenation of the two branches. The plaintext is the37

initial state 𝐿1‖𝑅1. A round computes state 𝐿𝑖+1‖𝑅𝑖+1 from 𝐿𝑖‖𝑅𝑖 as follows:38

{
𝑅𝑖+1 = 𝐿𝑖 ⊛ 𝐹(𝑅𝑖, 𝑘𝑖)
𝐿𝑖+𝑖 = 𝑅𝑖

�

The ciphertext is the state 𝐿𝑟+1‖𝑅𝑟+1 after 𝑟 rounds. The round keys 𝑘1, … , 𝑘𝑟 are derived from39
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Figure 1.3: Schema of a Feistel Cipher
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the key though a key schedule. A graphical depiction of the cipher is given in Figure 1.3 that1

includes an initial and final permutation (which have no influence on security) like the DES2

(Section 3.2 on page 129), and treats the key schedule as a black box.3

Feistel networks are just a special case of SPNs: only half of the state is modified at each round,4

but in fact the state is a function of the whole previous state, and the permutation function is5

very simple. This also means that confusion and diffusion must be in fact applied to the source6

branch. Since confusion and diffusion are applied only to part of the state, so a higher number7

of rounds is necessary, in fact roughly twice as much – but these rounds are also potentially8

less expensive (roughly a half) since they have to operate only on half of the state. Moreover,9

the steps are easy to revert in the case the composition is the XOR, since only the round keys10

have to be fed in the opposite order to decrypt.11

Finally, the F-function can be a simple SPN itself, so all the theory developed for SPNs is recy-12

cled – this is very well exemplified by the development of the Lucifer family of block ciphers13

(Section 3.1 on page 128) whose first instances were SPNs, and then the experience of the de-14

sign of these SPNs was exploited to design the round function of the “final” Lucifer described15

in [Sor84].16

In fact, the F-function itself can be an existing cipher, and therefore this construction can be17

seen as a simple way to double the block size of a cipher: the original cipher is used as the F-18

function, so it operates on half of the state of the new cipher, and the key-schedule is extended19
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to generate different round keys for the various instances of the original cipher. Ladder-DES1

and DEAL (Subsection 3.19.1 on page 179) are two ciphers that use DES as the round function2

in this way, and MAGENTA (Subsection 3.19.6 on page 181) uses a quite complex 12-layer SPN3

as its F-function.4

In general both confusion and diffusion are slower in a Feistel network than in a SPN, assuming5

they are equally well designed. This is general due to the fact that confusion and diffusion6

operations usually work only on a part of the state at each round, and will be discussed further7

in Subsection 1.8.4 on page 54. Hence, a Feistel network usually needs more rounds than a SPN8

to achieve comparable levels of security at the same block and key sizes. This often balances9

with the fact that the Feistel rounds are also lighter than in SPNs.10

But there is more: the power of this construction comes from the fact that the F-function needs11

not be bijective, with serious positive implications for performance, flexibility of design, and12

also for cryptographic theory. Michael Luby and Charles Rackoff analyzed the Feistel cipher13

construction [LR86], and proved that if the round function is a cryptographically secure pseu-14

dorandom function (where the round key is interpreted as the seed) then three rounds are suf-15

ficient to make the block cipher a pseudorandom permutation, while four rounds are sufficient16

tomake it a “strong” pseudorandompermutation (whichmeans that it remains pseudorandom17

even to an adversary who gets oracle access to its inverse permutation). Because of this very18

important result, Feistel ciphers are also called Luby-Rackoff ciphers.19

Finally, DavidGoldenberg et al. [GHL+07a, GHL+07b] show that the Luby-Rackoff construction20

makes it particularly easy to construct tweakable block ciphers from conventional block ciphers:21

In themethodwe havementioned to double the size of a block cipher, tweaking keys are added22

before the F-function and after the mix to the target branch.23

1.3.1 A Taxonomy of Feistel Networks24

There are many types of Feistel networks and generalisations, with the treatment going back to25

at least [ZMI89]. In Figure 1.4 on the facing page we show some of the most important types,26

where just one round is visualised for each variant. In place of the symbol ⊕ for the XOR we27

have used a “wildcard” composition symbol ⊛ in the figure because different operations can28

be used to mix the output of the F-function with the target branch. In particular, Hoang and29

Rogaway define an arithmetic Feistel network to be a Feistel network inwhich the composition30

with the target is a modular addition.31

The represented types are:32

1: Classic Feistel network, also called a balanced Type 1 Feistel network, wherebalancedmeans33

that the two branches have the same size.34

This is the topology of several notable ciphers such as DES (Section 3.2 on page 129), GOST35

(Section 3.4 on page 140), Blowfish (Section 3.9 on page 157), TEA and XTEA (Section 3.12 on36

page 161) CAST-128 (Section 3.7 on page 148), Twofish (Section 3.13 on page 164), Camellia37

(Section 3.18 on page 172), Simon (Subsection 3.36.1 on page 223) and many others.38

2: Mitsuru Matsui’s variation as used in various components of the ciphers MISTY-1, MISTY-39

2 and KASUMI (see Subsection 3.18.8 on page 176), is here given as the “L-network,” i.e.40

the version where the F-function is on the target branch. There is also another version, the41

“R-network,” studied by various authors, such as Yasuyoshi Kaneko, Fumihiko Sano, and42
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Figure 1.4: A (Partial) Taxonomy of (Generalised) Feistel Networks
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Kouichi Sakurai in [KSS97] and Henri Gilbert and Marine Minier in [GM01], where the F-1

function is on the source branch.2

Note that in these constructions the F-function must be invertible.3

3: Unbalanced Feistel network. The bit length of in1 and out0 is different from the bit length of4

in0 and out1. The output of a round can then be repartitioned before being input to the next5

round, but there are variants where there is no repartitioning, two different F-functions are6

used, with one “expanding” its input to be applied to the smaller branch and the other one7

“compressing” the input to apply the output to the larger branch, such as BEAR, LION and8

LIONESS (cf. Subsection 1.11.3 on page 69).9

Themost extreme example of repartitioning unbalanced Feistel network is the Thorp shuffle,10

where the 𝑛 bit state is divided into a 1 bit part and a 𝑛−1 bit part [MRS09] (see also [NR99] for11

an earlier realization of the usefulness of the Thorp shuffle in cryptography). The function12

𝐹 takes the 𝑛 − 1 bit part and outputs a single bit that is xored to the 1 bit part.13

NLFSR-based ciphers such asKeeloq (Subsection 3.3.3 onpage 138) andKATAN(Section 3.3114

on page 209) can be described in terms of unbalanced Feistel networks.15

Most unbalanced Feistel networks fall into the types that follow.16

4: Generalised FeistelNetwork (GFN)Type 1. It is one of themanyways to describe unbalanced17

networks: instead of having two branches of different width, we split the state into more18

than two branches (which, in the examples that follow, always have equal widths, but can19

of course still be unbalanced as well). The particular generalised Type 1 network depicted20

here has four branches, but there can be more than four branches.21

CAST-256 (Section 3.7 on page 148) is a classic example of this design.22

Note that in the subfigure maked 4 (a) there are two branches that are nor source nor target,23

and that the target gets permuted onto the source branch. Other variants are possible, for24

instance where the output of the F-function is combined to the in3 branch. In this case25

the source branch gets permuted onto the target, as represented in the subfigure maked26

4 (b), and this variant is actually the inverse of the previous design, up to numbering of the27

branches.28

The readermay now askwhat happens if (in a four-branch Type 1 Feistel with branch permu-29

tation (0 1 2 3) (3 0 1 2)) the source and target branches are the first and third, respectively.30

It is easy to see, in this case, that the cipher splits into two non-intermixed ciphers, of two31

branches each, and therefore this case is not interesting.32

The Skipjack (Section 3.14 on page 166) rounds combine ideas from the Type 4 and Matsui33

networks.34

5: Type 2, notable examples being RC6 (Section 3.15 on page 168), CLEFIA encryption and key35

schedule (Section 3.28 on page 203), and HIGHT (Section 3.27 on page 202). Note that it36

may seem at first sight that, if the branches are rotated in the opposite direction, we obtain37

a different topology, but in fact the two variants are equivalent.38

6: The topology studied by Kaisa Nyberg in [Nyb96]. It is a variation of Type 2 with a different39

permutation of the branches. The subfigure marked 6 (a) follows Kaisa Nyberg’s original40

depiction, whereas the subfigure marked 6 (b) shows how the permutation is different from41

the usual Feistel cyclic rotation of branches.42
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The significative difference between Type 2 andNyberg Type is that in the former source and1

target branches are always swapped, whereas in the latter some source and target branches2

are permuted to branches of the same type.3

7: Type 3, according to the definition given in [ZMI89]. To distinguish it from the next type, we4

call it also Zheng-Matsumoto-Imai Type 3 (see also Hoang and Rogaway [HR10a, HR10b]).5

8: MARS Type 3, also called target-heavy, which is used in MARS (Section 3.16 on page 169).6

9: Source-heavy, as used in RC2 (Section 3.5 on page 142), MacGuffin [BS94], SPEED [Zhe97],7

and in the LOKI97 key schedule (Subsection 3.19.5 on page 181).8

This is a dual of the target-heavy topology.9

The F-functions can be explicitly keyed, but for claritywe omitted arrows from the pool of round10

keys to the F-functions. The F-functions can be unkeyed internally by still be implicitly keyed11

by other transformations. Let us consider the classic Feistel network as an example. The cipher12

designermaywant to add a round key to in0 before the value is fed to the F-function. This value13

can be kept as the “new” in0 (which then goes to become out1) or be used only as an input to14

the F-function. Despite these different design choices, all these variants can be considered a15

classic Feistel network design.16

The outputs of the F-functions can also be used to “tweak” other inputs (this should not be17

confused with the concept of tweakable block ciphers). For instance, let us consider RC6 (Sec-18

tion 3.15 on page 168). It has essentially a Type 2 topology. Referring to the graphics of Fig-19

ure 1.4 on page 31, the output of the F-functions applied to inputs in0, resp. in2, is not only20

XORed to in1, resp. in3, but it also determines the amount of a further rotation of the already21

XORed values of in3, resp. in1.22

Henri Gilbert and Marine Minier in [GM01] develop for L- and R-networks analogue results23

to the work of Michael Luby and Charles Rackoff about Feistel networks. They prove that if24

the round function is a cryptographically secure pseudorandom function, then: a L-network25

is not pseudorandom with three rounds but four, and it is strong pseudorandom with five26

rounds (but not four); a R-network is already pseudorandom with three rounds but, similarly27

to the L-network, it is strong pseudorandom only with five rounds. Makoto Sugita [Sug96]28

and Kouichi Sakurai [SZ97] already proved independently that four rounds are not sufficient29

to make L-networks strong pseudorandom.30

Another set of variations on the Feistel design was discussed by Yasuyoshi Kaneko, Fumihiko31

Sano and Kouichi Sakurai at SAC 1997 [KSS97]. They consider all possible variants of two-32

branch Type 1 and Matsui L- and R-network rounds with keyed functions (or permutations) at33

three possible places: at the bottom, i.e. on the connection from split to composition (such as34

classic Feistel networks); on the target branch before the composition (such as in Matsui’s L-35

network); or on the source branch before the split (as in the R-network). The bottom placement36

is denoted by the letter B. Since there are two possibilities for each of the three places (i.e. there37

is a keyed function or there it none), and one case is trivial, they study seven combinations: B,38

L, R, LB, RB, LR and LRB. There are of course countless ways to combine these variants with39

the network topologies of Figure 1.4 on page 31.40

There of course more variations on the original Feistel design, and some of the above design41

classes are not necessarily distinct from each other. For instance, BEAR, LION and LIONESS42
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(cf. Subsection 1.11.3 on page 69), introduced by Ross Anderson and Eli Biham in [AB96], can1

be also seen as unbalanced Feistel designs that alternate source-heavy and target-heavy steps.2

On the other hand, the Thorp Shuffle can be seen as an extreme source-heavy cipher where3

each branch consists of just one bit of the state.4

1.4 The Wide Trail Design Strategy5

Expanding and specialising Shannon’s concepts, in 2001 Belgian cryptographers Joan Daemen6

and Vincent Rijmen introduced in [DR01, DR02a] the wide trail strategy. Their focus is on7

so-called key-alternating block ciphers, i.e. iterative block ciphers that can be written as8

𝐸[𝐾] = 𝜎[𝑘𝑟] ∘ 𝜌𝑟 ∘ 𝜎[𝑘𝑟−1] ∘ ⋯ ∘ 𝜎[𝑘1] ∘ 𝜌1 ∘ 𝜎[𝑘0]

where the unkeyed function 𝜌𝑖 is the 𝑖-th round of the block cipher, 𝜎[𝑘] denotes addition of9

round key 𝑘, 𝑘𝑖 = 𝜓𝑖(𝐾) is the 𝑖-th round key, and 𝜓𝑖 is the 𝑖-th step of the key schedule.10

Daemen and Rijmen then further specialise to ciphers with a “𝛾𝜆 round structure,” i.e. where11

the round function 𝜌 is factored as the composition12

𝜌 = 𝜆 ∘ 𝛾

of two functions 𝛾 and 𝜆 that are characterised as follows:13

• 𝛾 is a local non-linear transformation, providing confusion.14

By local it is meant that any output bit depends on only a limited number of input bits and15

that neighbouring output bits depend on neighbouring input bits.16

A typical construction for 𝛾 is the so-called bricklayer mapping consisting of a number of17

invertible S-boxes transforming each a word or bundle of the state in parallel and indepen-18

dently of each other. The bundles and the S-boxes they pass through are identifiedwith each19

other. In this construction the S-boxes are usually implemented by a table lookup (where a20

bundle of the state is replaced by a fixed value) or via short straight line programs consisting21

of logical operators.22

A bundle is usually a byte or a nibble, but other sizes are possible (bundles of 3, 6, 7 or 9 bits23

have been used).24

Requirements for the confusion layer are discussed in Section 1.9 on page 56.25

• 𝜆 is a linear mixing transformation providing diffusion. Often, the bundles of the state are26

considered as elements of a finite field 𝔽 , the state as a vector space 𝑉 over 𝔽 , and 𝜆 is a27

𝔽 -automorphism of 𝑉. In some cases a bit permutation is used instead.28

Such transformations are the subject of Section 1.8 on page 42.29

Round key addition is usually performed by XORing a round key. The wide trail strategy how-30

ever does not mandate the type of operation for the key mixing and does not deal with the key31

schedule. The resulting cipher is depicted in Figure 1.5 on the next page.32

The name “wide trail strategy” comes from the probability “trails” used in linear and differen-33

tial cryptanalysis:34

• In linear cryptanalysis (which will be described in detail in Section 2.2 on page 91 – here we35
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Figure 1.5: A Wide Trail SPN (Without Final Permutation)

Plaintext Key

KS

𝑆1 𝑆2 ⋯ 𝑆ℓ

𝑆1 𝑆2 ⋯ 𝑆ℓ

𝑆1 𝑆2 ⋯ 𝑆ℓ

𝑆1 𝑆2 ⋯ 𝑆ℓ

Ciphertext

Initial
Round

Round
1

Round
2

Round
𝑟−

1

𝑟−
1

N
orm

alRounds

Round
𝑟

(FinalRound)

𝑘0

𝑘1

𝑘2

𝑘𝑟−2

𝑘𝑟−1

𝑘𝑟

𝑃1

𝑃2

𝑃𝑟−1

just present a rough idea) the attacker tries to find a linear approximation of some output1

bits as a function of input bits, and he will follow the influence of the input bits through a2

“path” in an unrolled representation of the cipher. Such a path is called a linear trail.3

• In differential cryptanalysis (again, this will be described later in Section 2.1 on page 73)4

the attacker tries to find a correlation between changes in the input bits and corresponding5

changes in the output – say he is considering pairs of inputs 𝑃 and 𝑃 + 𝛥𝑃 for a fixed 𝛥𝑃 and6
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he searches for differences 𝛥𝐶 in the ciphertext, i.e. 𝛥𝐶 = 𝐸(𝑃) − 𝐸(𝑃 + 𝛥) that arise with a1

significant positive bias 𝜖. In this case the attacker will follow the trail along which such a2

input difference 𝛥𝑃 propagates through the cipher to reach the output difference 𝛥𝐶. Such3

a path (or trail) is called a differential characteristic.4

In both cases one usually starts observing how a small change or a small difference influences5

the intermediate values in a cipher. In the case of thewide trail design strategy, the propagation6

of these changes is observed through the bundles of the state. If an S-box is (guaranteed to be)7

affected by a change or differential (regardless of the state of the other S-boxes of the initial8

input), then this S-box is called active. The amount of active S-boxes for a given trail is called9

its bundle weight. A trail with large bundle weight is said to be wide.10

An obvious desirable property is that these trails be as wide as possible. It is intuitively clear11

that in a properly designed cipher the amount of bundles influenced at each round increases.12

The fundamental intuition here is that the wider these trails are, the harder they are to exploit.13

In particular, in the wide trail strategy, the substitution and diffusion layers can be examined14

on their own, and then combined together without worrying (too much) about how they will15

interact. In fact, a common design goal is that good diffusion should be attained independently16

from the characteristics of the S-boxes (provided the latter satisfy someminimal requirements).17

This clear separation of roles also allows the designer to optimise the S-boxes for a given pur-18

poses without taking into account the interaction with the diffusion layer, at least initially.19

The hardest part of the design is usually the linear transformations, since they are the most20

involved. Indeed, in Daemen and Rijmen’s own words [DR01]:21

Instead of spending most of the resources on large S-boxes, the wide trail strategy aims at22

designing the round transformation(s) such that there are no trails with a low bundle weight.23

In ciphers designed by the wide trail strategy, a relatively large amount of resources is spent24

in the linear step to provide high multiple-round diffusion.25

Since in general constructing large linear transformations is very difficult, they are computa-26

tionally expensive, and require considerable amount of code or gate equivalents to implement,27

Daemen and Rijmen suggest to construct the diffusion layer 𝜆 itself as the functional compo-28

sition of simpler operations, while at the same time guaranteeing full diffusion only over two29

rounds instead of after just one. In particular, in SQUARE (Section 3.11 on page 160), and in30

several ciphers after that, we have31

𝜆 = 𝜃 ∘ 𝜋

where 𝜋 is permutation of the words of the state (what is usually called a shuffle, see also Sub-32

section 1.8.2 on page 44) and 𝜃 a linear transformation, usually chosen to be easily parallelisable:33

For instance, in many constructions 𝑉 is a 16-dimensional vector space over 𝔽 , represented as34

the direct sum of four 4-dimensional vector spaces 𝑉 = 𝑉0 ⊕ 𝑉1 ⊕ 𝑉2 ⊕ 𝑉3, where 𝜋 permutes35

the basis elements of the four subspaces𝑉𝑖 among each other bymapping each of the four basis36

vectors of a subspace to a different subspace; and 𝜃 operates independently on each one of the37

four 𝑉𝑖 and in the same way. By means of these two operations full diffusion is guaranteed38

over two rounds. An implementation of this approach is shown in Section 3.20 on page 18239

(the operations 𝜋 and 𝜃 are called ShiftRows and MixColumns, respectively).40
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By choosing involutory𝜋, 𝜃 and 𝛾 and by reversing the output of the key schedule, it is possible1

to use the same data processing part for encryption and decryption, as done for instance in2

KHAZAD (Subsection 3.21.2 on page 190). In fact, if encryption is defined as3

𝐸[𝐾] = 𝜎[𝑘𝑟] ∘ (𝜋 ∘ 𝛾) ∘ 𝜎[𝑘𝑟−1] ∘ (𝜃 ∘ 𝜋 ∘ 𝛾) ∘ 𝜎[𝑘𝑟−2] ∘ ⋯ ∘ 𝜎[𝑘1] ∘ (𝜃 ∘ 𝜋 ∘ 𝛾) ∘ 𝜎[𝑘0] (1.1)

– note that the final round omits 𝜃 – then decryption is4

𝐷[𝐾] = 𝜎[𝑘0] ∘ (𝛾 ∘ 𝜋 ∘ 𝜃) ∘ 𝜎[𝑘1] ∘ ⋯ ∘ 𝜎[𝑘𝑟−2] ∘ (𝛾 ∘ 𝜋 ∘ 𝜃) ∘ 𝜎[𝑘𝑟−1] ∘ (𝛾 ∘ 𝜋) ∘ 𝜎[𝑘𝑟]
= 𝜎[𝑘0] ∘ (𝜋 ∘ 𝛾 ∘ 𝜃) ∘ 𝜎[𝑘1] ∘ ⋯ ∘ 𝜎[𝑘𝑟−2] ∘ (𝜋 ∘ 𝛾 ∘ 𝜃) ∘ 𝜎[𝑘𝑟−1] ∘ (𝜋 ∘ 𝛾) ∘ 𝜎[𝑘𝑟]
= 𝜎[𝑘′

0] ∘ (𝜋 ∘ 𝛾) ∘ 𝜎[𝑘′
1] ∘ (𝜃 ∘ 𝜋 ∘ 𝛾) ∘ 𝜎[𝑘′

2] ∘ ⋯ ∘ 𝜎[𝑘′
𝑟−1] ∘ (𝜃 ∘ 𝜋 ∘ 𝛾) ∘ 𝜎[𝑘′

𝑟]
(1.2)

where 𝜎[𝑘′
𝑡] ∘ 𝜃 = 𝜃 ∘ 𝜎[𝑘𝑡] for 1 ⩽ 𝑡 ⩽ 𝑟 − 1, which implies5

𝑘′
𝑡 = 𝜃(𝑘𝑡)

and thus a modified key schedule can deliver the sequence 𝑘𝑖 with almost no overhead. For6

instance, if the key schedule functions 𝜓𝑖 are affine, the overhead is a single application of 𝜃.7

If some components are not involutory, such as the substitution layer 𝛾, then in the decryption8

path the code or circuit must accomodate the selection of one layer or its inverse. In this case9

Equation (1.1) remains unchanged but Equation (1.2) must be adapted.10

1.5 The Lai-Massey Design11

An obvious problem with Feistel networks is that part of the state is left unchanged – in other12

words confusion is not applied to the whole state – in each round. On the other hand, Feistel13

networks allow for more freedom in the choice of the round functions than more general SPNs,14

andmake it easier to design ciphers where the data obfuscation path is the same for encryption15

and decryption.16

IDEA (Section 3.6 on page 144) attempts to combine the advantages of both Feistel networks17

and more general SPNs. Despite being still, in principle, a SPN, its design is original enough to18

warrant its own terminology: some authors indeed call IDEA and similar ciphers a Lai-Massey19

Design, which we represent in Figure 1.6 on the next page, after the names of its inventors.20

With respect to Feistel networks, there are two important differences: the two halves of the state21

are first combined before being fed to the F-function, and then the output of the F-function is22

combined with both halves of the state. The purpose is to accelerate both diffusion and confu-23

sion.24

In order to be able to reverse this scheme the input to 𝐹 must be reconstructed from the outputs.25

For the operations as we pictured them, it is necessary that26

𝐿 ⊛ 𝑅 = (𝐿 ⊚ 𝛥) ⊛ (𝑅 ⊙ 𝛥)

is satisfied for all 𝐿, 𝑅 and 𝛥. This is clearly satisfied if all three operations ⊛, ⊚ and ⊙ are the27

bitwise XOR, but other combinations of operations are possible. For instance we can take ⊛28

and ⊚ to be integer addition, while ⊙ is integer subtraction.29
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Figure 1.6: The Lai-Massey Scheme (one Round)
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We note that 𝐿 ⊛ 𝑅 is a constant, therefore a permutation layer is added after the F-function,1

and often an additional operation 𝜎 (called an orthomorphism) is necessary to avoid ⊛-diffe-2

rentials that an attacker may otherwise be able to exploit. The permutation layer alone, if it3

can guarantee good diffusion over sufficiently many layers, may make the orthomorphism 𝜎4

superfluous – other designs may include 𝜎 but no permutation.5

Further Lai-Massey ciphers include Akelarre [AdlGMP96], MESH [JRPV03], and FOX, known6

also as IDEA NXT (Section 3.23 on page 195).7

Serge Vaudenay studies in [Vau99b] security properties of Lai-Massey schemes and proves in8

that for Lai-Massey schemes with an orthomorphism the same security bounds as for Luby-9

Rackoff constructions, i.e. if the F-function is a a random function, then three rounds are suffi-10

cient to make the block cipher a pseudorandom permutation, while four rounds is sufficient to11

make it a strong pseudorandom permutation.12

1.6 The Even-Mansour Schemes and the FX Construction13

In 1991, Shimon Even and Yishay Mansour considered the question: What is the simplest pos-14

sible construction of a block cipher which is provably secure in some formal sense? To answer this15

question they came up with a minimalistic design [EM91, EM97], inspired by Ron Rivest’s FX16

construction. Let us introduce the latter first.17

The FX Construction was introduced by Ron Rivest in order to strengthen DES and, in general,18

any existing cipher: a block cipher 𝐸𝑋 is built with (2𝑛 + ℓ)-bit key and 𝑛-bit block from a block19

cipher 𝐸with ℓ-bit key and 𝑛-bit block by xoring the input and output of 𝐸with a pre-whitening20

key and a post-whitening key:21

𝐸𝑋
𝑘0,𝑘1,𝑘2

(𝑥) ∶= 𝐸𝑘1
(𝑥 ⊕ 𝑘0) ⊕ 𝑘2 .

In the case of DES the resulting cipher is called DESX (see Subsection 3.2.9 on page 134). In22

general, the name of the construction refers to “F”, i.e. any function, and “X”, meaning that the23

function 𝐹 is eXtended.24
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The Even-Mansour (EM) scheme instead uses whitening keys – each as large as the plaintext1

block – around a publicly known, fixed, non-keyed random permutation in themiddle. The resulting2

scheme is extremely simple: To encrypt an 𝑛-bit plaintext, XOR it with a 𝑛-bit key, apply a3

publicly known permutation, and XOR the result with a second 𝑛-bit key. It is easy to see4

that the scheme is minimal in the following sense: if one of the two whitening steps or the5

permutation is omitted the reduced cipher is easy to break.6

The main difficulty, of course, is to construct the permutation, which must be a pseudoran-7

dom function, but even assuming that this is the case, Joan Daemen immediately attacked this8

scheme [Dae91]with a chosen ciphertext attack of complexity𝑂(2𝑛/2) –we note that the scheme9

needs 2𝑛 key bits. Orr Dunkelman, Nathan Keller and Adi Shamir prove in [DKS12] a bound10

𝛺(2𝑛/𝑆) on attacks on the Even-Mansour scheme where 𝑆 is the number of known plaintexts,11

thus matching Joan Daemen’s upper bound. They also show that one key can be used in place12

of two (of course both ends must be whitened), hence only 𝑛 key bits are needed to attain the13

same security bounds.14

Hence, even assuming the central permutation is ideal, the security that can be attained is at15

most 2𝑛/2 – which may be more than enough in some cases. Better security bounds can be16

attained by alternating more key additions and state permutations – we will discuss this in17

Section 2.6.5 on page 116. Such generalised Even-Mansour scheme suggest that not all rounds18

in an interative key alternating-design (cf. Section 1.4 on page 34) must necessarily be keyed,19

even though one must be careful not to lose security. In fact some block cipher designs do20

not key every round: MARS (Section 3.16 on page 169) is one such example, and Threefish21

(Section 3.30 on page 207) and the lightweight design LED (Subsection 3.37.4 on page 229) also22

apply key mixing only every four rounds.23

The differences between the EM-scheme and the FX-construction are fundamental: the internal24

cipher of the FX-construction is not assumed to be a pseudorandom function, and in general it25

is not (it is often a cipher for which the existence of distinguishers, even practical ones, has been26

proved), and it is keyed. But the attacks on the EM scheme can still be mounted, for instance27

by fixing the internal ℓ-bit key and mounting a generic attack on EM schemes on the resulting28

function.29

As a result, Joe Kilian and Phillip Rogaway [KR96b, KR01a] show that, if the core cipher 𝐸 is30

ideal, the FX construction achieves (ℓ+𝑛−1−log 𝑇)-bit security where 𝑇 is the number of pairs31

of inputs and outputs for 𝐸 known by the attacker.32

The FXConstruction is not only a very inexpensiveway to strengthen an existing cipher (against33

brute force attacks, differential and linear cryptanalysis) but it has become a design criterion34

on its own: Nowadays several ciphers are designed including a key whitening step.35

It must be kept in mind that the construction gives a tradeoff security, which it inherits from36

the EM scheme: in order to attain a classical level of ℓ + 𝑛 bits of security (i.e. there are no at-37

tacks taking less time than 2ℓ+𝑛, including data collection and preprocessing) a different design38

strategy is required.39

A noteworthy form of key whitening – as introduced by the cipher FEAL, followed by Khufu40

andKhafre – uses keys derived from the initial keymaterial. In a Feistel cipher, this can increase41

security by concealing the specific inputs to the first and last round functions. This version of42

key whitening offers no additional protection from brute force attacks, but it can make other43
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attacks more difficult.1

Some ciphers that employ key whitening are: FEAL (Subsection 3.3.4 on page 139), MARS2

(Section 3.16 on page 169), Twofish (Section 3.13 on page 164), RC6 (Section 3.15 on page 168),3

Camellia (Section 3.18 on page 172), HIGHT (Section 3.27 on page 202), CLEFIA (Section 3.284

on page 203), PRINCE (Section 3.35 on page 217) and Piccolo (Subsection 3.37.2 on page 228).5

Pierre-Alain Fouque and Pierre Karpman in [FK13a, FK13b] describe a stronger version of the6

FX construction where in place of simple key whitening more complex keyed functions are7

used. Such functions, called decorrelation modules, are described in Subsection 1.10.3.8

1.7 The Key Schedule9

The key schedule is a crucial component of a block cipher – and probably the least well under-10

stood. A weakness in it can break down completely designs which are otherwise quite clever:11

It can give rise to classes of weak keys (Section 2.5 on page 107), i.e. keys for which the cipher is12

easy to break, or make the cipher amenable to attacks specifically targeting relations between13

keys (Section 2.6 on page 108), MITM attacks and their variants (Section 2.4 on page 97), and14

perhaps also zero correlation cryptanalysis (Subsubsection 2.2.8.2 on page 95). At the same15

time, there are strong ciphers with very simple key schedules.16

In fact, Rijmen and Daemen already stated in the AES design book [DR02b, P. 77] that: “There17

is no consensus on the criteria that a key schedule must satisfy.”18

1.7.1 The Role of the Key Schedule19

A key schedule can be used in various ways in a block cipher:20

1. In a product cipher it can simply specify the subkeys that aremixed to the state at each round.21

Classic examples are given by the DES (Section 3.2 on page 129) and most SPNs, including22

AES (Section 3.20 on page 182).23

2. It may be used to initialise some fixed elements of a cryptographic transform, such as sub-24

stitution tables. This is done, for instance, in Blowfish (Section 3.9 on page 157) and Twofish25

(Section 3.13 on page 164), as well as in the block ciphers C [BF06a] and KFC [BF06b], de-26

signed by Thomas Baignères andMatthieu Finiasz and briefly described in Subsection 1.10.327

on page 64.28

3. Its output can be used to dynamically select functions from fixed families to be used in29

certain places of the cipher. These families of functions can be S-boxes from a list, or variable30

rotations. This was the approach used in some early ciphers such as Lucifer (Section 3.1 on31

page 128), the DES, CAST (Section 3.7 on page 148), as well as in variants of C and KFCwith32

precomputed families of S-boxes.33

The perhaps most extreme example is given by FROG (Subsection 3.19.3 on page 180), that34

essentially expands the key into a program describing the data obfuscation path.35

At least in the first of these three cases, the key schedule seems to have a subordinate role to36

the data obfuscation path: if the latter presents weaknesses, the former cannot repair it. This37

is what ultimately breaks DES with any key schedule, even with independent round keys [BS93].38

Also, the principle of confusion states that the key bits must be combinedwith the plaintext bits39
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in as complex way as possible. In an iterative block cipher with round key mixing between the1

rounds, the use of diffusion and confusion to destroy any linear relation between plaintext and2

ciphertext already partially contributes to the desired mixing of the key bits with the plaintext,3

which intuitively should be “as good” as the non-linearity between plaintext and ciphertext.4

But, it is not clear how complex the key schedule must be in order to achieve a sufficient dif-5

fusion of the key bits in combination with the round functions. A first study of this is done6

by Jialin Huang and Xuejia Lai in [HL12, HL14], where they propose a criterion to evaluate for7

necessary key schedule diffusion that takes into account the round diffusion.8

Even though a theoretically good data obfuscation path is necessary to achieve security (as9

DES shows), it is not sufficient: for instance, a periodic key schedule of length 𝑡 ⩾ 1 reduces the10

security of the full cipher to that of a 𝑡 rounds-reduced one, regardless of the actual length of the11

cipher because of slide attacks (Subsection 2.6.2 on page 110). On the other hand, slide attacks12

require the ability to mount an efficient known plaintext attack on the 𝑡 rounds-reduced version13

of the cipher, which in turn means that if 𝑡 is a number large enough to make such an attack14

sufficiently slow (even though, technically, the 𝑡 rounds-reduced version of the cipher may be15

broken), then using that periodic key schedule may still be fine.16

1.7.2 Construction of the Key Schedule17

We have just mentioned that the simplest key schedule, i.e. the constant key schedule, is funda-18

mentally weak in simple product ciphers, because it reduces the security of the cipher to that of19

a single round. One possible opposite extreme of the spectrum is represented by independent20

round keys, or the use of a complex key derivation function – a strong PRNG (pseudo-random21

number generator) – to derive the keys from a seed.22

Most proofs of security for block ciphers rely on strong assumptions about the independence23

of the round keys, or more generally about the pseudo randomness of the output of the key24

schedule process – an approach that is fruitful in cryptanalysis, as proved by the usefulness of25

the theory of Markov ciphers (cf. Subsection 2.1.2 on page 78). Using independent round keys26

would make the effective key length very big, while mixing only parts of it in each round and27

at the same time breaking the principle of confusion – rendering in fact the cipher less secure28

with respect to the effective key length Also, the resulting cipher would be trivially susceptible29

to a meet-in-the-middle attack (Section 2.4 on page 97) with complexity exponential in half of30

the effective key length. Hence, depending on the actual structure of the data obfuscation path31

the actual security level could be even lower.32

Therefore many designs put a strong emphasis on complex key schedules, some of which ap-33

proach the complexity of pseudo-random number generators (PRNGs), seeded with a master34

key that has a length matching the desired security level. The key schedules of KHAZAD (Sub-35

section 3.21.2 on page 190), RC5 (Section 3.18 on page 159), RC6 (Section 3.22 on page 169), and36

Blowfish (Section 3.9 on page 157), are such examples. Indeed, some block ciphers even do use37

a cryptographically strong PRNG as their key schedule, such as C and KFC. With a complex38

key schedule, the hope is that confusion, as expressed in key avalanche (avalanche effect of the39

key bits), can be achieved also with a relatively simple data obfuscation path.40

On the other hand, the intuition expressed earlier, that combining a data obfuscation path41

providing good confusion together with a simple key schedule (but still eschewing trivial key42

schedule design mistakes), suggests that the key schedule construction issue itself may be over-43

41



CHAPTER 1. DESIGN

blown. A proof of this might be indeed represented by the later members of the SAFER family1

(Section 3.8 on page 150) and by IDEA (Section 3.6 on page 144).2

So there are two extremes, represented by trivial key schedules and very complex ones, where3

the latter give a more solid foundation at the price of reduced key agility. And it is perhaps4

because of this consideration that some design methodologies, such as the wide trail design5

strategy, that favour the design of an “ideal” data obfuscation path, do not include key schedule6

design techniques.7

There are several ways to construct a key schedule. Some common strategies (with blurry mu-8

tual boundaries) are:9

1. Use a linear key schedule, combining bit permutations and extractions and other linear oper-10

ations. This is done in Lucifer, DES, KeeloQ (Subsection 3.3.3 on page 138) GOST (Section 3.411

on page 140), IDEA, Skipjack (Section 3.14 on page 166), and Bel-T (Section 3.33 on page 214).12

2. The same as the previous method, but also masking with fixed constants, such as in the13

SAFER family (Section 3.8 on page 150), SQUARE (Section 3.11 on page 160), SIMON (Sec-14

tion 3.36 on page 222), and Piccolo (Subsection 3.37.2 on page 228).15

PRINCE (Section 3.35 on page 217) is an extreme example because each round key is just the16

master key XORed with a different round constant.17

3. Sometimes, a non-linear component is added to the previous two processes, such as in the18

AES, PRESENT (Section 3.29 on page 206), and SPECK (Section 3.36 on page 222).19

4. Encrypt the master key using a block or stream cipher with fixed keys, and use the interme-20

diate states of the block cipher or the output of the stream cipher as the subkeys.21

The same algorithm as the data obfuscation path (possibly shortened) can be reused to gen-22

erate some or all of the subkeys, as in Camellia (Section 3.18 on page 172), or NOEKEON23

(Subsection 3.21.4 on page 193); or a different one, possibly reusing some of the components24

of the the data obfuscation path, as in FEAL (Subsection 3.3.4 on page 139), KHAZAD, RC5,25

RC6, Twofish, ICEBERG (Section 3.24 on page 197), SEA (Section 3.26 on page 199), CLEFIA26

(Section 3.28 on page 203), and KLEIN (Subsection 3.37.1 on page 226).27

Two more extreme cases are Blowfish, that repeatedly uses the encryption routine to gener-28

ate the key expansion, and SHARK (Subsection 3.21.2 on page 190), whose key schedule is29

based on cipher itself in CFB mode. (We note that in SHARK key mixing is done both by30

simple XORs and more complex affine transforms.)31

It has not been conclusively proved that key schedule plays a part in providing strength against32

linear and differential cryptanalysis. Some experimental evidence is given in Knudsen and33

Mathiassen in [KM04]: using a toy cipher, they observed that complex schedules can reach a34

uniform distribution for the probabilities of differentials and linear hulls faster than those with35

poorly designed key schedules.36

1.8 Diffusion37

The state of a SPN can usually be viewed as an array of smallerwords or bundles. It is these bun-38

dles that are usually transformed by some non-linear operation such as S-boxes, then combined39
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with a round key, and permuted among each other or, if they are interpreted as elements of1

some algebraic structure (for instance as a vector space over a finite field) even composed with2

each other using some kind of linear operation.3

Suppose an attacker changes a bit in the input. The corresponding S-box ideally changes on4

average a half of its bits – this means that, other than confusion, an S-box already performs5

a limited diffusion process. These altered bits are then further diffused by the diffusion layer6

and thus affect the input to one or more S-boxes in the following round. Ideally, even more7

S-boxes are affected in the following round and so on. The affected S-boxes are called active8

S-boxes and, intuitively, to increase both efficiency and security it is desirable that the number9

of active S-boxes becomes maximal after as few rounds as possible. In other word, we want to10

attain good diffusion. There are different techniques to achieve it, and we shall present the most11

significant ones.12

1.8.1 Bit Permutations13

Several recent ciphers, such as PRESENT (Section 3.29 on page 206) and PRINTcipher (Sec-14

tion 3.32 on page 211) use a simple bit permutation of the S-box outputs to achieve diffusion.15

Therefore additional conditions on the S-boxes are placed to improve the avalanche effect. (For16

instance single input differences should not trigger the same single input difference in another17

S-box in the next round).18

However, these ideas have been developed very early in the history of block ciphers, and bit19

permutations were commonplace in early designs, such as the Data Encryption Standard 3.220

on page 129 and GOST 28147-89 3.4 on page 140.21

One of the earliest treatments of bit permutation networks in SPNs is due to John Kam and22

George Davida [KD79], who introduce the notion of completeness: A bijective function 𝑓 ∶23

{0, 1}𝑛 {0, 1}𝑛 (for instance a S-box) is said to be complete if, for every 𝑖, 𝑗 ∈ [0..𝑛 − 1], there24

exist two n-bit vectors 𝑥1, 𝑥2 such that 𝑥1 and 𝑥2 differ only in the 𝑖th bit and 𝑓 (𝑥1) differs from 𝑓 (𝑥2) at25

least in the 𝑗th bit. Similarly, a keyed cipher is said to be complete if it is complete function for all keys.26

(It is easily seen that the Strict Avalanche Criterion is a strengthening of this property.)27

Kam and Davida also show how to construct complete ciphers. The fundamental idea consists28

in alternating substitution layers, where the S-boxes are assumed to be complete themselves,29

with specially defined wired permutation layers. Each output bit in a layer should be wired to30

input bits to distinct (but not necessarily different) S-boxes at the next layer. The corresponding31

graph, with the S-boxes as nodes and the wirings as edges directed from an S-box in a layer to32

an S-box in the next layer, should connect each input bit to the SPN to each output bit through33

exactly one path, in other words it should be a polytree, i.e. be acyclic. Usually the S-boxes are34

either keyed or the key is mixed before the S-Box, one key bit per input bit.35

Each SPN output bit may thus be viewed as a tree function of the SPN input bits, where each36

tree function is composed of S-boxes. Similarly, the network inputs may be viewed as tree37

functions of the network output bits. Therefore, several authors follow Howard M. Heys and38

Stafford E. Tavares in [HT93, HT95] and refer to SPNs constructed using the Kam and Davida39

methodology as tree-structured SPNs or TS-SPNs.40

Kam and Davida provide a concrete construction method, by means of which, a complete SPN41

with block size of 𝑛 = 𝑚𝑡 bits can be built using 𝑡 substitution layers and 𝑡 − 1 bit permutation42

43



CHAPTER 1. DESIGN

Figure 1.7: Complete Tree-Structure SPNs Following the Kam-Davida Construction
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layers. Examples for (𝑚, 𝑡) = (4, 2) and (3, 3) are shown in Figure 1.7. However, there is a prob-1

lemwith their construction: it can be shown that if a single input bit is changed, the probability2

of an output bit changingwill always be 2−𝑡. This was shown in [Web85] and termed avalanche3

damping (see also [WT85]).4

John Kam and George Davida obtained US Patent 4,275,265 on their design in 1981. A similar5

idea, where pairs of bits are permuted as bundles, but otherwise in an entirely analogous way,6

is described in Thomson-CSF’s US Patent 4,751,733 (filed in 1986, lapsed).7

It is these ideas that influenced the wiring used in PRESENT (where completeness is achieved8

over two rounds, as it can be seen from Figure 3.34 on page 206) and, to a lesser extent, PRINTci-9

pher. The design of composite S-boxes such as those of Khazad (Subsection 3.21.2 on page 190)10

and Anubis (Subsection 3.21.3 on page 192), or of ICEBERG (Section 3.24 on page 197) is, on11

the other hand, more similar to the scheme of the Thomson-CSF patent.12

Simple bit permutations are particularly efficient in hardware, as they amount to just wiring.13

Some exceptional cases may be implemented efficiently also in software. However, they suffer14

from the problem that an output bit may at most influence a single input bit of the next layer15

of the cipher, and therefore diffusion is slower than with more sophisticated linear layers. and16

more rounds may be necessary than with more complex linear diffusion layers. As a conse-17

quence, bit permutation based diffusion layers are more suitable to very compact hardware18

implementations than to efficient implementations (mostly in software, but also in hardware).19

A historical remark: Kam-Davida constructions have been used repeatedly to build example20

ciphers for the purposes of explaining cryptanalysis. For instance in Howard M. Heys’s excel-21

lent tutorial on linear and differential cryptanalysis [Hey02], or to create practical examples of22

new attacks in order to analyse them, as in [Lea10, BG10, AL12]. However, this SPN is almost23

always used or rediscovered without attribution.24

1.8.2 Shuffles25

The shuffle of the branches of a (generalised) Feistel network is usually just a simple circular26

rotation of the branches of the state. A shuffle is therefore just a particular bit permutation.27

In the SAFER cipher family (Section 3.8 on page 150) diffusion is achieved by alternating a28
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layer of Pseudo-Hadamard Transforms with a bundle shuffle; the latter is carefully chosen to1

guarantee that after three such layers a change is diffused to all bundles (with some exceptions2

that we discussed earlier).3

Taking a cue fromKaisaNyberg’swork onGFNs [Nyb96], that includes, for instance, the design4

depicted in Figure 1.4 on page 31, Subfigure 6 (b), Tomoyasu Suzaki and Kazuhiko Minematsu5

in [SM10] consider shuffles of the branches in GFNs, with the goal of minimising the number6

of rounds necessary to achieve full diffusion.7

Consequently, they consider the setting where a single shuffle is performed per round – as8

opposed to the multi-shuffle design of SAFER. We see immediately that on one hand, shuffles9

are just bit permutations, but on the other hand they are compatible with the partitioning of the10

state in branches or bundles. This has two important consequences: all the output bits of a S-box11

(or of a Feistel target) influences the input to just one bundle or branch in the following round;12

this influence can be intuitively controlled better, since we do not have to take into account the13

influence of single unchanged output bits.14

Let 𝜋 be a shuffle of the branches of the Feistel network, where the branches are identified15

with the corresponding index set (for a 𝑘-branch GFN this set would be [0..𝑘 − 1]). Define16

the quantity DR𝜋(𝑗) as the minimum number of rounds necessary to diffuse the 𝑗-th sub input17

block of the first round, 𝑥(𝑗)
0 to all sub output blocks (of the DR𝜋(𝑗)-th round), and DRmax(𝜋)18

to be the maximum of all such DR𝜋(𝑗). For a 𝑘-branch Type 2 GFS it is 𝜋(𝑗) = (𝑗 + 1) mod 𝑘19

and it is easy to see that DRmax(𝜋) = 𝑘. However, for a different shuffle 𝜋 of the branches, the20

corresponding DRmax(𝜋) can be different.21

Now, let us first define22

DRmax±(𝜋) ∶= max {�DRmax(𝜋) , DRmax(𝜋−1)}�

(so that both encryption and decryption are taken into consideration) and23

DRmax∗
𝑘 ∶= min {�DRmax±(𝜋) ∶ 𝜋 ∈ 𝛴([0..𝑘 − 1])}�

where𝛴([0..𝑘−1]) is the full symmetric group over the set [0..𝑘−1]. An exhaustive search gives24

DRmax∗
4 = 4, DRmax∗

6 = 5, DRmax∗
8 = 6, DRmax∗

10 = 7, and DRmax∗
𝑘 = 8 for 𝑘 = 12, 14, 16.25

Suzaki and Minematsu then searched for optimal block shuffles, and for their optimal 𝜋∗
𝑘26

DRmax(𝜋∗
𝑘 ) = DRmax((𝜋∗

𝑘 )−1)

holds true. Interestingly, for 𝑘 = 8 a permutation 𝜋 was found such that DRmax(𝜋) = 5 and27

DRmax(𝜋−1) = 7, which is not optimal w.r.t. the above definition of DRmax∗
𝑘. A cipher de-28

signed around that permutation could have decryption easier to analyze than encryption! This29

is an uncommon occurrence, but, for instance, FROG (Subsection 3.19.3 on page 180) is such a30

cipher.31

All optimum block shuffles 𝜋∗
𝑘 found by Suzaki and Minematsu also satisfy the property that32

any even-indexed input block is mapped to an odd-indexed output block and vice versa – so33

that the output of a target branch is permuted to the input of a source branch. Such shuffles are34

called even-odd shuffles.35
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A lower bound for DRmax∗ for even-odd shuffles can be derived as follows. For a fixed one1

block input difference, let𝑁𝑜
𝑖 , resp.𝑁𝑒

𝑖 , be the number of odd-numbered, resp. even-numbered,2

sub blocks in the 𝑖-th round output affected by that input block. Initially we have that one3

of 𝑁𝑒
0 and 𝑁𝑜

0 is 0 and the other one is 1. Assuming that the shuffle works ideally, we have4

𝑁𝑒
𝑖 = 𝑁𝑒

𝑖−1 + 𝑁𝑜
𝑖−1, and 𝑁𝑜

𝑖 = 𝑁𝑒
𝑖−1 and from this we see that 𝑁𝑒

𝑖 = 𝑁𝑒
𝑖−1 + 𝑁𝑒

𝑖−2 holds. Hence5

{𝑁𝑒
𝑖 }𝑖 is a Fibonacci sequence. For a GFSwith an even-odd shuffle, if a certain number of rounds6

is sufficient to achieve the diffusion to all even output blocks, the full diffusion is achieved7

by one more round. Therefore, if 𝑖 is the smallest integer that satisfies 𝑁𝑒
𝑖 ⩾ 𝑘/2, 𝑖 + 1 is the8

lower bound forDRmax∗ for all even-odd shuffles for 𝑘 blocks (not necessarily achievable). The9

sequence {𝑁𝑒
𝑖 }𝑖 takes lower values with 𝑁𝑒

0 = 0 and 𝑁𝑜
0 = 1 and gives the Fibonacci numbers.10

Hence 𝑁𝑒
𝑖 ≈ 𝜑𝑖/√5, where 𝜑 is the golden ratio, and the lower bound for DRmax∗ is roughly11

log𝜑 √5𝑘/2 ≈ log2 1.44𝑘. The optimal results mentioned above for even 𝑘, 4 ⩽ 𝑘 ⩽ 16 are very12

close to this bound.13

In [SM10] Suzaki and Minematsu show how to use colored de Bruijn graphs to build a block14

shuffle for 𝑘 = 2𝑠+1 (for any 𝑠 ⩾ 2) whose DRmax∗ is at most 2𝑠 + 2 = 2 log2 𝑘. This is quite15

close to the log2 1.44𝑘 lower bound just proved. For the details of the constructionwe refer to the16

paper. The important remark here is that this gives an upper bound that proves the logarithmic17

growth of DRmax∗
𝑘.18

The authors also compare their results to those of James Massey for the branch permutation19

used for diffusion in the SAFER family, in particular to the Armenian Shuffle used in SAFER+20

(cf. Subsection 3.8.3 on page 152). Even though the Armenian Shuffle is also based on a de21

Bruijn graph, it is not an even-odd shuffle – bit this is not a problem for SAFER+, since it is a22

bricklayer cipher, not a generalised Feistel.23

It is still an open question if better shuffle families can be found – i.e. with a smaller DRmax –24

or how it can be achieved by mixing different types of shuffles.25

1.8.3 Diffusion Layers Based on Linear Algebra26

For simplicity let us assume that the words of the state are elements of a module 𝑉 over a ring27

𝑅 (𝑉 can be the ring itself) so that its elements can be added to each other and multiplied by28

elements of 𝑅 (scalars). More generally, we can consider modules over rings instead. The state29

is this just a 𝑛-tuple 𝑣 of elements of 𝑉 and we consider the following type of transformation:30

𝑣 is multiplied by a 𝑛 × 𝑛 matrix 𝑀 over 𝑅. Multiplication by 𝑀 should be invertible at least in31

the case where the diffusion is used directly in a “classic” SPN.32

Note that the diffusion layer can sometimes be described as a matrix even when this operation33

is described in a different way. For instance, in SAFER (Section 3.8 on page 150) the diffusion34

layer (which can be seen in Figure 3.14 on page 151) is constructed from simpler operations over35

the ring 𝑅 ∶= ℤ/256ℤ of integers modulo 256, but a matrix representation is clearly possible.36

SAFER is perhaps the oldest cipher to use a linear diffusion layer in place of a permutation of37

the bits of the state to achieve diffusion, so we want to have a closer look at its design. The38

structure of the diffusion layer can be written as TPTPT, where P means permutation (of the39

bundles) and T is the layer of pseudo-Hadamard transforms (PHT). T transforms all pairs of40
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adjacent bundles 𝑥𝑖, 𝑥𝑖+1 with 𝑖 even using the following PHT:1

(
𝑥′

𝑖
𝑥′

𝑖+1 ) = (
2 1
1 1 ) ⋅ (

𝑥𝑖
𝑥𝑖+1 ) (mod 256) .

Hence, the T layer is represented by the 8×8 blockdiagonalmatrix𝐴with thematrix(
2 1
1 1 ) on2

the diagonal four times. The permutation of the bundles is called a shuffle. It is the permutation3

(0 2 4 6 1 3 5 7)

and corresponds to the matrix4

𝐵 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(mod 256) .

Hence, the 𝑅-matrix representing the entire diffusion layer of SAFER is5

𝑀 = 𝐴 ⋅ 𝐵 ⋅ 𝐴 ⋅ 𝐵 ⋅ 𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

8 4 4 2 4 2 2 1
4 2 2 1 4 2 2 1
4 4 2 2 2 2 1 1
2 2 1 1 2 2 1 1
4 2 4 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(mod 256) .

Let us now consider the effect of this matrix on the state, interpreted as a vector of length eight6

over the ring 𝑅. Since the operator defined by𝑀 is linear, in order to determine how differences7

in the input propagate it suffices to consider the differences as relative to the zero vector, i.e. to8

study the images of individual vectors. Most vectors 𝑣 of weight one are mapped to vectors9

𝑣 ⋅ 𝑀 of weight eight, but not all, for instance, 𝑣 = (32 0 0 0 0 0 0 0)𝑡 is mapped to a vector10

𝑣 ⋅ 𝑀 = (0 128 128 64 128 64 64 32)𝑡 of weight seven, and the image of 𝑣′ = (128 0 0 0 0 0 0 0)𝑡 has11

weight just one: 𝑣′ ⋅ 𝑀 = (0 0 0 0 0 0 0 128)𝑡. Intuitively, this means that some inputs or some12

differences do not diffuse well through the layer. Catastrophic consequences are in fact avoided13

only by the fact that SAFER uses good S-boxes and the fact that the single bundle difference on14

the eighth vector element will completely diffuse in the following round.15

1.8.3.1 Multipermutations and MDS Matrices16

The obvious question is: what are the matrices that guarantee the most complete diffusion? The17

question is somewhat ill posed because a desirable property of any component of a block cipher18
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is its fast evaluation. Hence, a good diffusionmatrixmust strike the right balance between good1

diffusion and fast evaluation: a less perfect but much faster diffusion layer could still lead to a2

cipher that it faster and not less secure than another cipher making use of an ideal, but slower,3

diffusion layer. Also the question of performance is per se difficult to formalise: for instance, a4

sparse matrix is not necessarily good if some entries represent elements which are expensive5

to multiply with.6

This said, the first problem remains that of measuring the quality of diffusion and determining7

optimal matrices – performance considerations, including compromises, come later.8

To address this first problem, Serge Vaudenay suggested [Vau94] (generalising previous work9

by himself and Claus-Peter Schnorr [SV94]) to use multipermutations: Given an alphabet ℳ and10

integers 𝑛, 𝑠, a a (s, n)-multipermutation over the alphabet ℳ is a function 𝑓 from ℳ𝑠 to ℳ𝑛 such11

that two different (𝑠 + 𝑛)-tuples of the form (𝑥, 𝑓 (𝑥)) cannot collide in any 𝑠 positions. Serge Vaudenay12

in particular first observed that the PHT in SAFER (and hence the whole diffusion layer) is not13

a multipermutation.14

To construct multipermutations, if the alphabet is representable as a finite field, he suggested to15

use (the redundancy part) of MDS matrices, i.e. matrices of MDS (maximum distance separa-16

ble) codes, which are the codes which reach the Singleton bound: In other words a 𝑛 × 𝑠 matrix17

𝑀 over a finite field 𝔽 is an MDSmatrix if it is the transformation matrix of a linear transforma-18

tion 𝑓 ∶ 𝔽 𝑠 𝔽 𝑛, 𝑥 𝐴𝑥 with the following property: if 𝑥 and 𝑥∗ differ in exactly 𝑡 components,19

then 𝑓 (𝑥) and 𝑓 (𝑥∗) must differ in at least 𝑛 − 𝑡 + 1 components. The latter property is called20

perfect diffusion. Vaudenay also showed how to exploit imperfect diffusion for cryptanalysis (as21

in the case of reduced rounds of SAFER with suboptimal S-boxes, cf. Section 3.8 on page 150).22

Now, to see why this is optimal and indeed a desirable cryptographic property, let us assume23

𝑠 = 𝑛 and consider first the case of a single changed inputword. Then the change should spread24

to all outputs – a property that, as we have seen at the beginning of this section, is not satisfied25

by the SAFER diffusion later. If we now change two words, we may always choose them to26

that one of the outputs of the linear transformation is equal to the corresponding input (this is27

a simple linear algebra exercise) so we cannot do better than requiring that at least 𝑛 − 1 inputs28

are changed.29

Note however, that the MDS condition, for 𝑠 = 𝑛 is stronger than being invertible (i.e. non-30

singular), as exemplified by the identity matrix, and non-singularity is of course not a sufficient31

condition for being an MDS matrix, since it applies only to square matrices. Non-singularity,32

however, gives a way to characterise an MDS matrix: Theorem 8 (page 321) of [MS77] states33

that a matrix is an MDS matrix if and only if every square sub-matrix is non-singular. In particular,34

a MDS matrix cannot have zero entries.35

The first notable cipher to use MDS matrices for diffusion is Shark [RDP+96], designed by36

Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers and Erik De Win (cf. Subsec-37

tion 3.21.2 on page 190). For the design of the diffusion layer, the 𝑚-bit outputs of the S-boxes38

are considered as elements of 𝔽𝑚. The diffusion layer takes 𝑛 𝑚-bit values as input, and gives39

𝑛 𝑚-bit outputs. Such a vector or 𝑛 𝑚-bit values represents the state of the cipher. Joan Dae-40

men defines optimal diffusion using the branch number [Dae95]: The branch number ℬ of an41

invertible linear mapping 𝜃 is42

ℬ𝜃 = min
𝑎≠0 (�wt(𝑎) + wt(𝜃(𝑎)))�
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where wt(𝑎) is theHammingweight of 𝑎 (here 𝑎 is considered as a tuple of elements over some al-1

gebraic structure - the bundles - so byHammingweight it is understood the number of nonzero2

elements of the tuple). ℬ𝜃 gives a measure for the worst case diffusion: it is a lower bound for3

the number of active S-boxes in two consecutive rounds of a linear trail or a differential charac-4

teristic.5

Note that wt(𝑎) ⩽ 𝑛, for every choice of 𝜃; if wt(𝑎) = 1, this implies that ℬ𝜃 ⩽ 𝑛+1. An invertible6

linear mapping 𝜃 for whichℬ𝜃 = 𝑛+1 is called optimal. If the vector 𝑎 represents, for instance,7

an input differential, we see how this definition of optimality corresponds to the multipermu-8

tation property. In fact, it follows directly from the definitions of branch number and of MDS9

codes that the generator matrix of an MDS code defines an optimal linear transformation 𝜃.10

Furthermore, this 𝜃 must be invertible.11

Other examples of block ciphers that useMDSmatrices for diffusion are SQUARE [DKR97] (see12

Section 3.11 on page 160), Twofish (Section 3.13 on page 164), the AES contest winner Rijndael13

(Section 3.20 on page 182), Hierocrypt [OMSK00], IDEA NXT (Section 3.23 on page 195), Clefia14

(Section 3.28 on page 203), Piccolo (Subsection 3.37.2 on page 228), and LED (Subsection 3.37.415

on page 229), MDS matrices are used also in the stream cipher MUGI [WFY+04] and in the16

cryptographic hash function WHIRLPOOL [BR11a].17

It is worth noting that the entries in the MDS matrices are usually chosen as to be elements18

of low Hamming weight, in order to make multiplication by them as inexpensive as possible.19

This is often done by exhaustive search within certain classes of MDS matrices, such as gener-20

ator matrices of Reed-Solomon codes. Also, since a MDS matrix cannot have zero entries, the21

desirable type of sparseness is a small amount of entries not equal to one.22

Even multiplication by low Hamming weight elements of a finite field can be too expensive for23

some applications. Therefore some ciphers, such asmCrypton (Section 3.25 onpage 198), define24

their diffusion matrix in a different, ad hoc, way. The corresponding study of the diffusion25

properties is also ad hoc and the S-boxes have to be chosen carefully.26

We shall return to the problem of constructing efficient MDS diffusion layers in Subsubsec-27

tion 1.8.3.3 on page 51.28

Another problem arises with states that consists of many words, for instance 16, as in 128-bit29

SPNs with 8-bit S-boxes (or with 64 bit SPNs that use 4-bit S-boxes), namely that the diffusion30

matrix becomes too large - in the examples we just made it would be a 16 × 16 matrix. The31

solution adopted in ciphers such as SQUARE and Rijndael, with 16 words (of one byte each)32

is to only apply diffusion to each of four blocks of four words independently during a round33

- and then to simply permute the words in such a way that full diffusion will be completed34

in the following round. Therefore instead of the multiplication of a diffusion matrix times a35

column vector, in such ciphers the diffusion operation is implemented as a multiplication of36

two matrices: the diffusion matrices and a matrix whose columns are segments of the state. In37

mathematical notation this is described in Section 3.20 on page 182.38

1.8.3.2 Types of MDS Matrices39

We recall that what we called a MDS matrix 𝑀 is, formally, the non-systematic (or redundancy)40

part of the generator matrix of an MDS code. This means that a basis for the corresponding 𝑛 + 𝑘-41

dimensional codeword space over a finite field 𝐾 is given by the rows of the generator matrix42
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𝐺 = (𝑀|𝐼𝑛), where 𝑀 is a 𝑘 × 𝑛 matrix and 𝐼𝑛 is the identity 𝑛 × 𝑛 matrix.1

Here we are chiefly interested in square MDS matrices, i.e. with 𝑘 = 𝑛, however we must ob-2

serve there are further uses in cryptography: the F-function of the block cipher PICARO (Sub-3

section 3.38.1 on page 230), a Feistel network, uses a full generator matrix 𝐺 of an MDS code4

to embed a eight-dimensional vector space over 𝔽28 into a 14-dimensional one, and then the5

transpose of 𝐺 to compress back 14 dimensions to eight. In this case the generator matrix has6

a 6 × 8 redundancy part.7

There are two ways of constructing MDS matrices: one can start with a known MDS code, for8

instance the code used in Shark is a Reed-Solomon code, or search for matrices that satisfy the9

non-singular sub-matrix condition.10

Cauchymatrices are a classic example ofMDSmatrices. They are of the form (� 1
𝑥𝑖−𝑦𝑗 )�

0⩽𝑖,𝑗<𝑛 with11

all 𝑥𝑖 − 𝑦𝑗 ≠ 0 over a field 𝐾. In general they do not lend themselves readily to optimisation.12

Amr Youssef, Serge Mister and Stafford Tavares define in [YMT97] a special class of Cauchy13

matrices for the design of diffusion layers in block ciphers: they construct their matrices 𝐴14

over a binary field 𝐾 by first choosing the 𝑥𝑖’s such that the least significant 𝑟 bits of 𝑥𝑖 are the15

binary representation of the number 𝑖, and then putting 𝑦𝑖 = 𝑥𝑖 ⊕ 𝑣 where 𝑣 is a nonzero field16

element such that its least significant 𝑟 bits are all zero. This matrix satisfies 𝐴2 = 𝑐𝐼𝑛 where17

𝑐 = ⨁𝑛−1
𝑖=0 (� 1

𝑥1⊕𝑦𝑖 )�2 over 𝐾. The matrix 𝐴 is then normalised dividing all its entries by √𝑐, so18

that it becomes involutory. Such a 𝑛 × 𝑛 matrix also has only 𝑛 different entries, which are19

used for both encryption and decryption, reducing the number of circuits or short programs to20

implement for the multiplication by constants.21

Vandermonde matrices (see [Yca13] for their history and naming) are matrices where each row22

is of the form 1, 𝛼𝑖, 𝛼2
𝑖 , … , 𝛼𝑛−1

𝑖 for pairwise distinct 𝛼𝑖’s. They are MDS matrices and there are23

very efficient algorithms for multiplication of vectors by them, as this operation amounts to24

multi-evaluation of a polynomial of degree 𝑛 − 1 at 𝑛 points. These algorithms are DFT based25

(cf. Chapter 3 of [Pan01]) and therefore suitable only for large matrices. We are not sure which26

is the first mention of Vandermonde matrices for the construction of diffusion layers in SPNs:27

Often, in the literature, a 2004 paper by Jérôme Lacan and Jérôme Fimes [LF04] is cited, which28

however deals with a clever use of Vandermonde matrices to build erasure codes, not with29

cryptographic applications.30

Hadamard matrices 𝐻 have the property that 𝐻 ⋅ 𝐻𝑡 = 𝑛𝐼𝑛 (here 𝐻𝑡 denotes the transpose31

of 𝐻). The first such matrices were originally constructed by James Joseph Sylvester [Syl67]32

and Jacques Hadamard [Had93] as real matrices with entries equal to ±1, but over finite fields33

the latter condition is relaxed. The property 𝐻 ⋅ 𝐻𝑡 = 𝑛𝐼𝑛 makes them suitable to construct34

involutory diffusion layers, upon scaling, and they are used for this purpose in Anubis (Sub-35

section 3.21.3 on page 192) and Khazad (Subsection 3.21.2 on page 190).36

Mahdi Sajadieh et al. in [SDMO12], construct involutory MDS matrices using Vandermonde37

matrices over fields 𝔽2𝑟 . Their idea is to take 𝑛 pairwise distinct and non-vanishing values 𝛼𝑖 for38

0 ⩽ 𝑖 < 𝑛, a nonzero 𝛿 in 𝔽2𝑟 , and to put 𝛽𝑖 = 𝛼𝑖 ⊕ 𝛿. If 𝐴 and 𝐵 are the Vandermonde matrices39

associated to the 𝑛-uples (𝛼0, 𝛼1, … , 𝛼𝑛−1) and (𝛽0, 𝛽1, … , 𝛽𝑛−1), then 𝐵 ⋅ 𝐴−1 is an involutory40

MDS matrix. They then go on to construct 2𝑑 × 2𝑑 Hadamard involutory matrices recursively,41

starting from slightlymodified 4×4Vandermondematrices: Kishan ChandGupta and Indranil42

Ghosh Ray [GR13a] show that these matrices can be constructed also starting from Cauchy43
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matrices.1

1.8.3.3 Constructing Efficient MDS Matrices2

We now focus on the problem of constructing efficient MDS matrices. We have already men-3

tioned that choosing matrices with entries of low Hamming weight is often desirable, but the4

actual problem is the minimisation of the cost of the multiplication by the whole MDS matrix.5

Multiplication of a variable vector or matrix, over a finite field, by a fixed matrix with hard-6

wired nonzero constant entries has a code or area complexity strongly correlated with the num-7

ber of entries different from one (the actual values of such entries of course also plays a role).8

Therefore, Pascal Junod and Serge Vaudenay introduce in [JV04b] the following criterion: if9

𝑣1(𝑀) is the number of entries equal to one in the matrix 𝑀 and 𝑐1(𝑀) is the cardinality of the set 𝐶(𝑀)10

of distinct entries in 𝑀 which are different from one, then the goal is to maximise 𝑣1(𝑀) and to minimise11

𝑐(𝑀). Of course this does not take into account special situations which may make some ma-12

trices more efficient than others in some cases: for instance, multiplication the generator 𝑥 of13

the polynomial basis of the field is inexpensive, as is also multiplication by 𝑥−1; and the struc-14

ture of the set 𝐶(𝑀) is not taken into account, as when some elements are the sum or product15

of other elements in the set. Junod and Vaudenay then start constructing candidates for MDS16

matrix from the concept of bi-regularity: a 2×2 array with nonzero entries in a field 𝐾 is bi-regular17

if at least one row and one column have two different entries. It is clear that bi-regularity is a pre-18

requisite for non-singularity. MDS matrices are constructed iteratively by extending bi-regular19

arrays, and lower bounds for 𝑣1(𝑀) and 𝑐1(𝑀) are given as a function of the dimensions of the20

matrices.21

To support their point through examples, Junod andVaudenay consider the 4×4MDSmatrix𝑀22

over 𝔽28 = 𝔽2[𝑥]/(𝑥8+𝑥4+𝑥3+𝑥+1) used in Rijndael – i.e. thematrix used in theMixColumns23

step described in Section 3.20 on page 182. It has 𝑐1(𝑀) = 2, which according to [JV04b] is24

optimal, but 𝑣1(𝑀) = 8, whereas a lower bound of 𝑣1(𝑀) = 7 is possible. Multiplication by25

the Rijndael matrix can be implemented using 15 XORs, four table lookups in one table (to26

implement multiplication) and using three temporary variables. Junod and Vaudenay show27

that the family of matrices of the form28

⎛
⎜
⎜
⎜
⎝

𝑎 1 1 1
1 𝑎 1 𝑏
1 𝑏 𝑎 1
1 1 𝑏 𝑎

⎞
⎟
⎟
⎟
⎠

can be implemented using 10 XORs and seven table lookups in two tables, using two temporary29

variables. Using the sub-matrix non-singularity criterion, it is easily seen that such a matrix is30

a MDS matrix over a field extension of 𝔽2 if and only if 1, 𝑎, 𝑏, and 𝑎 + 𝑏 are pairwise distinct31

from each other, 𝑎 ≠ 𝑏2, and 𝑎2 ≠ 𝑏. This matrix is at the basis of the diffusion layer in IDEA32

NXT-64 (Section 3.23 on page 195). Junod and Vaudenay also construct a 8 × 8 matrix over 𝔽28 ,33

which is used in IDEA NXT-128. Being MDS, these matrices all have optimal branch numbers,34

i.e. 5 and 9 respectively.35

A different line of research, followed by several authors during the last few years, and that is36

particularly advantageous for ciphers whose design criteria are compactness of code and data37

or of area, is to construct MDSmatrices iteratively. The idea is simple, if a matrix𝑁 exists with a38
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very compact and sparse representation such that the 𝑘th power of 𝑁 is a MDS matrix 𝑀, then1

one can just apply 𝑘 times the matrix 𝑁 in place of 𝑀. (For some reason, such constructions are2

often called recursive in the literature.)3

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew Robshaw design the diffusion layers4

of the hash function PHOTON [GPP11] and of the block cipher LED [GPPR12, GPPR11] by5

constructing their MDS matrix as the power of the companion matrix of a LFSR. Recall that if6

𝑦𝑛+𝑘 = 𝑐𝑛−1𝑦𝑛+𝑘−1 + 𝑐𝑛−2𝑦𝑛+𝑘−2 + ⋯ + 𝑐1𝑦𝑘+1 + 𝑐0𝑦𝑘 (1.3)

is a recursive relation with 𝑐0, 𝑐𝑛−1 ≠ 0, then its characteristic polynomial is7

𝑔(𝑋) = 𝑋𝑛 − (�𝑐𝑛−1𝑋𝑛−1 + 𝑐𝑛−2𝑋𝑛−2 + ⋯ + 𝑐1𝑋 + 𝑐0)� (1.4)

and its companion matrix is the matrix 𝐶 such that8

⎛
⎜
⎜
⎜
⎝

� 0 𝐼𝑛−1

𝑐0 𝑐1 ⋯ 𝑐𝑛−1⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶

�
⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎜
⎝

𝑦𝑘
𝑦𝑘+1

⋮
𝑦𝑛+𝑘−1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝑦𝑘+1
⋮

𝑦𝑛+𝑘−1
𝑦𝑛+𝑘

⎞
⎟
⎟
⎟
⎠

, (1.5)

which is denoted by Serial(𝑐0, 𝑐1, … , 𝑐𝑛−1) in [GPP11]. The inverse of 𝐶 has a simple form as well9

10

⎛
⎜
⎜
⎜
⎜
⎝

0 𝐼𝑛−1

𝑐0 𝑐1 ⋯ 𝑐𝑛−1

⎞
⎟
⎟
⎟
⎟
⎠

−1

=

⎛
⎜
⎜
⎜
⎜
⎝

− 𝑐1
𝑐0

⋯ − 𝑐𝑛−1
𝑐0

1
𝑐0

𝐼𝑛−1 0

⎞
⎟
⎟
⎟
⎟
⎠

(1.6)

and its application is therefore also very efficient.11

In the cipher LED, 16 bits of the state are interpreted as four nibbles and each nibble as an12

element of 𝔽24 via the definition polynomial 𝑥4 + 𝑥 + 1; if we identify the bits of a hexadecimal13

number with the corresponding polynomial representation of a field element, we have14

𝐴 ∶=
⎛
⎜
⎜
⎜
⎝

0𝑥 1𝑥 0𝑥 0𝑥
0𝑥 0𝑥 1𝑥 0𝑥
0𝑥 0𝑥 0𝑥 1𝑥
4𝑥 1𝑥 2𝑥 2𝑥

⎞
⎟
⎟
⎟
⎠

4

and 𝑀 ∶= 𝐴4 =
⎛
⎜
⎜
⎜
⎝

4𝑥 1𝑥 2𝑥 2𝑥
8𝑥 6𝑥 5𝑥 6𝑥
B𝑥 E𝑥 A𝑥 9𝑥
2𝑥 2𝑥 F𝑥 B𝑥

⎞
⎟
⎟
⎟
⎠

,

where 𝐴 is chosen so that 𝑀 is MDS, hence it has optimal branch number 5. Hence, instead15

of using 𝑀 directly in the diffusion layer, in LED the matrix 𝐴 is applied four times. Since all16

entries have weight one, this can be implemented very efficiently. The actual entries of the last17

row of the companion matrix are found by exhaustive search so that 𝑀 is MDS.18

Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala and Pouyan Sepehrdad in [SDMS12]19

construct their matrices by fixing 𝑐0 = 1 in the companion matrix as given in Equation (1.5).20

By means of this the repeated application of the companion matrix can be represented as a21
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unkeyed source-heavy GFN with 𝑛 branches (similar to Figure 1.4 on page 31, Subfigure 9)1

{
𝑦0 = 𝑦0 ⊕ (𝑐𝑛−1𝑦𝑛−1 ⊕ 𝑐𝑛−2𝑦𝑛−2 ⊕ ⋯ ⊕ 𝑐1𝑦𝑘+1)
(𝑦0, 𝑦1, … , 𝑦𝑛−1) (𝑦1, … , 𝑦𝑛−1, 𝑦0) ,

�

and thus the application of the inverse transform, being just the inversion of the Feistel network,2

is easy (see also Equation (1.6) with 𝑐0 = 1). They also describe their transformations in terms3

of general linear transformations 𝐿, which are initially not fixed – instead the matrix 𝑀 and the4

determinants of its sub-matrices are first computed symbolically. Then these linear transforma-5

tions are specialised to integral algebraic elements over 𝔽2 and a binary field containing them6

is constructed.7

Shengbao Wu, Mingsheng Wang and Wenling Wu in [WWW12] further reduce the search to8

companion matrices where the entries of the last row are all powers of the same linear transfor-9

mation 𝐿, including negative powers. Thus the number of building blocks to be implemented10

is further reduced. By focusing on transformations that use a single XOR they achieve diffusion11

layers with an impressively small number of XOR gates.12

The main problem with last two approaches is that they require to perform a large exhaustive13

search over very large spaces. For instance, to find a full diffusion layer for an AES-like cipher,14

the search space has cardinality 2128.15

Kishan Chand Gupta and Indranil Ghosh Ray consider in [GR13b, GR13c] 4 × 4 matrices com-16

puted as the fourth power of companion matrices such as Serial(1, 𝛼, 1, 𝛼2), Serial(1, 𝛼, 1, 𝛼 + 1)17

and Serial(1, 𝛼, 𝛼2, 𝛼 + 1), where 𝛼 is an element of the field extension, and characterise when18

these are MDS. They also consider other forms of companion matrices and 5 × 5 examples.19

Daniel Augot and Matthieu Finiasz in [AF13a, AF13b] improve upon the results of [WWW12,20

SDMS12] to produce 8×8 diffusion matrices over 𝔽24 and 16×16matrices over 𝔽25 . One of their21

key optimisations is that they fix the minimal polynomial that 𝐿 must satisfy in advance. Still,22

the search is too slow for large ciphers.23

The same authors propose in [AF14] a different approach, where the construction is direct in-24

stead of being based on an exhaustive search. The idea is that if we have an LFSR (1.3) with25

characteristic polynomial (1.4) we can write the companion matrix as26

𝐶 ∶=
⎛
⎜
⎜
⎜
⎝

0 𝐼𝑛−1

𝑋𝑛 mod 𝑔(𝑋)

⎞
⎟
⎟
⎟
⎠

. (1.7)

Now, 𝐶𝑛 is MDS if and only if the matrix 𝐺 = (𝐶𝑛|𝐼𝑛) is the generator matrix of a MDS code,27

which means that we are looking for MDS codes generated by28

𝐺 ∶=
⎛
⎜
⎜
⎜
⎝

𝑋𝑛 mod 𝑔(𝑋)
𝑋𝑛+1 mod 𝑔(𝑋)

⋮
𝐼𝑛−1

𝑋2𝑛−1 mod 𝑔(𝑋)

⎞
⎟
⎟
⎟
⎠

.

Each line of the matrix (a codeword) is a multiple of 𝑔(𝑋), hence we have a cyclic code. In what29
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follows, for terminology, definitions and proofs regarding cyclic codes we refer to [MS77].1

Since in general, given a generator polynomial 𝑔(𝑋), computing the minimal distance of the2

associated cyclic code is a hard problem, Augot and Finiasz restrict their attention to a class3

of codes for this the problem admits an easy solution: BCH codes. A BHC code over a finite4

field 𝔽𝑞 is the cyclic code defined by a polynomial 𝑔(𝑋) that is the least common multiple of the minimal5

polynomials over 𝔽𝑞 of the elements 𝛽ℓ, 𝛽ℓ+1, … 𝛽ℓ+𝑑−2. This 𝑔(𝑋) defines a cyclic code of length6

𝑛 equal to the order of 𝛽 (i.e. 𝑛 is the smallest positive inter such that 𝛽𝑛 = 1) and minimal7

distance at least 𝑑. The dimension of the code is 𝑛 − deg(𝑔), which means that the code is MDS8

if deg(𝑔) = 𝑑 − 1, and since 𝑔(𝑋) has 𝑑 − 1 roots, and the 𝛽ℓ+𝑖 for 𝑖 = 0, … , 𝑑 − 2 are among those,9

they form a complete orbit of algebraic conjugates.10

The final observation is that in a diffusion layer the input and output size are equal, so we need11

a code of dimension, say, 𝑛 and length 2𝑛 – i.e. 𝛽 must have order 2𝑛, which is not possible in12

a binary field. Therefore a longer BCH code is built, and then shortened – in other words, 𝛽 is13

chosen as an element of order 2𝑛 + 𝑧 for some odd positive 𝑧, the corresponding BCH code is14

constructed, and then it is shortened by the last 𝑧 positions. Shortening removes some words15

from the code, which means that it can not decrease the minimal distance, and if the code is16

MDS, shortening it preserves the MDS property. For the remaining (technical) details, we refer17

to the paper.18

Thismethod is efficient andpermits the construction of large examples. For a diffusion layer of 𝑛19

bundles over 𝔽𝑞 all possible BCH codes can be searched in time polynomial in 𝑞 and 𝑛. However,20

not allMDSmatrices cannot be obtained thusly – hencematriceswhich are optimalwith respect21

to some additional and independent properties may not be found by this procedure.22

Finally, the shortening length 𝑧 can be very big. Shortening a code can increase its minimal23

distance: This is what happens with the matrix of the Photon hash function, which was re-24

constructed by Augot and Finiasz: the 4 × 4 matrix comes from a code of length 224 − 1, that25

has minimal distance 3. Once shortened to length 8, the minimal distance grows to 5.26

1.8.4 More on the Diffusion in Feistel Networks27

Diffusion in Feistel Networks is a more complex topic than in the case of SPN ciphers. We have28

already seen in the previous subsection that a desirable property of branch shuffles in multi-29

branch GFNs is that they map odd branches to even branches and viceversa – property that the30

shuffles used in the SAFER family (Section 3.8 on page 150) need not satisfy.31

However, in most cases the main reason for the added complexity is that in Feistel networks,32

diffusion happens at two different levels:33

1. At the F-function level, changes in one input bit should be diffused to the output. In most34

cases this diffusion is only partial: not only these changes remain initially restricted to a35

block whose size if a fraction of the cipher’s state, but, even though some ciphers have a36

multi-round F-function (a notable example is LOKI97, described in Subsection 3.19.5 on37

page 181), this diffusion is not necessarily very strong from a cryptographic point of view,38

and it is made stronger by iteration in the whole cipher.39

2. At the Feistel network level, changes in one branch of the state are “applied” to other branches40

in the following rounds, thus diffusing the changes propagated at the F-function level.41
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These two facts imply that diffusion is usually a slower process in Feistel networks than in1

SPNs, making a higher number of rounds a necessity. Hence, there have been a few attempts2

to improve diffusion in (generalised) Feistel networks. The first such attempt was made by3

Kaisa Nyberg in [Nyb96] – cf. Subfigures 6 (a) and 6 (b) of Figure 1.4 on page 31: It is a Type 24

Feistel network with a different permutation of the branches, and it was originally intended to5

be usedwith a simple round function that only consists of a single S-box, leaving diffusion to be6

performed by the more complex permutation. Good resistance against linear and differential7

cryptanalysis was proved.8

After the work of Kaisa Nyberg, most efforts went into improving diffusion within the F-func-9

tion or across the F-functions of consecutive rounds. Taizo Shirai and Kyoji Shibutani [SS04]10

study the use of MDS matrices in the F-function of a classic Feistel Network. Their observation11

if that the F-function is a SPNwhere the permutation layer is a linear transformation, the use of12

the same transformation will lead to the overlapping of similarly linearly transformed inputs in13

two successive rounds. The use of different matrices, alternated in a regular pattern, improves14

resistance against differential cryptanalysis and achieves a number of active S-boxes compara-15

ble to that of a pure SPN such as AES. They call this approach Diffusion Switching Mechanism.16

A theoretical explanation why this new design using three different matrices with maximal17

branch number achieves the better immunity is given by Taizo Shirai and Bart Preneel in [SP04].18

Taizo Shirai and Kyoji Shibutani later prove in [SS06] that the conditions on the matrices and19

be relaxed somewhat. We observe that even though the Diffusion Switching Mechanism was20

conceived for classical two branch Feistel networks, it was lated adopted to more general Type21

2 Feistel networks by the designers of CLEFIA (Section 3.28 on page 203).22

Research focused then again on the optimization of the branch permutation with Tomoyasu23

Suzaki and Kazuhiko Minematsu’s seminal paper [SM10]. Suzaki and Minematsu explicitly24

prove a lower bound for the number of rounds necessary for full diffusion of a single branch25

difference and show how to construct branch permutations (shuffles) that come very close to26

this bound. Their results will be discussed in detail in Subsection 1.8.2 on page 44, where they27

are applied to the design of the TWINE block cipher.28

Kyoji Shibutani [Shi10] analyzes the combination of these two approaches (MDSmatrices inside29

an SP type F-function and branch shuffles). Tight bounds for the number of active S-boxes after30

a few rounds are given, that depend only on the branch number of thematrices used if a branch31

permutation of the type studied in [SM10] is used. These results allow to significantly reduced32

the required number of rounds to be secure against differential and linear attacks.33

Andrey Bogdanov and Kyoji Shibutani consider Feistel networks where the F-function consist34

of S-box layers interleaved with linear diffusion. The motivation for this research is that the in-35

stantiation of a Feistel network with an SP-type F-function is deployed in many cryptographic36

algorithms including E2 (cf. Section 3.18), Twofish (Section 3.13 on page 164), Camellia (Sec-37

tion 3.18), CLEFIA (Section 3.28 on page 203), PICCOLO (Subsection 3.37.2 on page 228), and38

the hash function SHAvite-3 [BD10]. Several results have been published so far:39

1. For 2 branch balanced Feistel ciphers, in [BS13b] they prove that SPS and SPSP F-functions40

are optimal in terms of the proportion of active S-boxes in all S-boxes – a common efficiency41

metric for substitution-permutation ciphers. Interestingly, one SP-layer in the F-function is42

not enough to attain optimalitywhereas takingmore than two S-box layers does not increase43

the efficiency either.44
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2. In [BS11] three-branch Type 1 generalised Feistel networks (GFN) where the F-functions are1

two round SP networks are studied. The F-functions use MDS matrices. The authors show2

that, when applicable, three-branch GFNs can be more efficient in practice than those with3

four branches.4

3. The line of research from [BS11] is then continued in [BS13a], where all variants of Type 15

and Type 2 four-branch GFNs with two-round SP F-functions are considered. The rationals6

for studying invertible two-round SP F-functions (we recall that the F-function in a Feistel7

Network needs not a priori to be invertible) is summarized by the authors as follows:8

(a) Due to the second S-box layer, double SP-functions allow, on the one hand, to limit the9

analysis to the differential and linear activity patterns of functions and, on the other hand,10

to effectively increase the number of active S-boxes.11

(b) The second diffusion layer of a double SP-function constrains the differential effect (i.e.12

there are many differential trails contributing to the same differential) which may affect13

SPS-functions.14

(c) Having an odd number of SP-layers does not enable to prove tight bounds on the number15

of active S-boxes by working with functions. It is also conjectured that functions with16

more than 2 SP-layers do not add to the efficiency of the construction. Hence double17

SP-functions provide an optimal efficiency.18

(d) The invertibility prevents a function from absorbing differences: If a nonzero difference19

enters a bijective function the output difference will also be nonzero.20

Advantages over single-round SP-type F-functions are proven explicitly. For all considered21

GFN topologies several types of cryptanalitic attacks and lower bounds for differential and22

linear probabilities are explicitly given.23

Finally, in [Bog11] the less analyzed case of unbalanced Feistel networks is considered. In par-24

ticular, three- and four -branch source-heavy Feistel networks are studied, where the contribu-25

tions coming from the various rounds are XORed after the SP round.26

1.9 Confusion27

A crucial aspect in the design of a substitution-permutation network (including Feistel ciphers28

and other types) is the substitution layer – without it a cipher is in most cases simply a linear29

operation.30

Some ciphers achieve the desired resistance while dispensing with S-boxes altogether. In IDEA31

(Section 3.6 on page 144) three operations on mutually “incompatible” algebraic structures are32

combined: multiplication in the multiplicative group of the integers modulo 257, integer addi-33

tionmodulo 256, and bitwise XOR.Any two of these three operations do not satisfy anydistribu-34

tive or associative law. This makes it very difficult to find linear approximations oF-functions35

obtained by chaining these operations and provides also good differential properties. Further36

example of such ciphers are given by the RC5 (Section 3.10 on page 158), RC6 (Section 3.1537

on page 168), TEA and XTEA (Section 3.12 on page 161), HIGHT (Section 3.27 on page 202),38

Threefish (Section 3.30 on page 207), and SIMON and SPECK (Section 3.36 on page 222). A lot39
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of work done to assess the strength of a cipher designed around different types of operations1

is ad-hoc. However, Serge Vaudenay’s decorrelation theory, explained in Subsection 1.10.3 on2

page 64, offers some insights, especially when multiplications are used.3

Sometimesmutually incompatible algebraic structures are used in conjunction with S-Boxes, to4

increase the non-linearity provided by the latter. This has been done in GOST (Section 3.4 on5

page 140), in the the SAFER family (Section 3.8 on page 150), Blowfish (Section 3.9 on page 157),6

the cast CAST family (Section 3.7 on page 148), and many other ciphers.7

In many cases, however, the non-linear components of a block cipher – or at least the most8

important ones – can be represented as vectorial Boolean functions that map 𝑛 bits to 𝑚 bits:9

𝐹 ∶ 𝔽 𝑛
2 𝔽 𝑚

2
(𝑥0, … , 𝑥𝑛−1) (𝑦0, … , 𝑦𝑚−1) .

Such a function is also called a (n,m)-function. It can also be viewed as a vector of 𝑚 Boolean10

functions with the same 𝑛 inputs, that can also be studied independently.11

Regardless of how the actual function is implemented, we can consider it as a S-box.12

A very thorough discussion of Boolean functions and of vectorial Boolean functions for cryp-13

tography can be found in Claude Carlet’s chapters of [CH10], i.e. Chapter 8 [Car10a] and Chap-14

ter 9 [Car10b].15

In the following sections we shall recall the principal design or selection criteria for S-boxes. To16

add some confusion (sic) to our treatment, some of these criteria actually deal with diffusion,17

such as the strict avalanche criterion, but, as we shall see, are ultimately related to confusion18

properties of the S-box as well.19

1.9.1 Properties of a Confusion Function20

1.9.1.1 Balancedness21

A (𝑛, 𝑚)-function 𝐹 is called balanced if every value of 𝔽 𝑚
2 is taken by 𝐹 the same number 2𝑛−𝑚22

of times. In other words, the function is surjective and the distribution of the values is uniform.23

The balanced (𝑛, 𝑛)-functions are the permutations on 𝔽 𝑛
2 .24

Balancedness is an important property for nonlinear components of a cipher in order to avoid25

statistical dependences between plaintext and ciphertext. Per se, balancedness is not a rare26

property: Any nonconstant affine function is balanced, but affine S-boxes are useless. On the27

other hand, it can be tricky to find a S-box that is balanced as well as satisfying other desirable28

cryptographic properties, as we shall see in the following subsections.29

A (𝑛, 𝑚)-function 𝐹 is balanced if and only if its component functions are balanced, that is, if30

and only if, for every nonzero 𝑏 ∈ 𝔽 𝑚
2 , the component (Boolean) function31

𝐹𝑏 ∶ 𝑥 ⟨𝑣, 𝐹(𝑥)⟩

is balanced (i.e. it takes the values 0 and 1 each 2𝑛−1 times). A proof of this result can be found32

in [LN83] or [Car10b].33
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1.9.1.2 Algebraic Degree1

The S-boxes should be algebraic functions of high degree in other to resist higher order dif-2

ferential attacks (Subsection 2.1.5 on page 83), which aim at eliminating low degree functions3

contributing to confusion in block cipher, as well as algebraic attacks.4

We can write any Boolean function 𝑓 ∶ 𝔽 𝑛
2 𝔽2 as a sum of monomials:5

𝑓 (𝑥) = ∑
𝑢∈𝔽 𝑛

2

𝑎𝑢
𝑛−1
∏
𝑖=0

𝑥𝑢𝑖
𝑖 .

This is the algebraic normal form (short ANF, also known as Zhegalkin normal form, or Reed-6

Muller expansion) of the Boolean function 𝑓 . The degree of the function 𝑓 is the degree of the7

largest monomial in its ANF. It is a desirable property that for an S-Box 𝑠, any linear function8

of its output bits 𝑥 ⟨𝑠(𝑥), 𝑎⟩ (with 0 ≠ 𝑎 ∈ 𝔽 𝑛
2 ) has as largest degree as possible (or, at least,9

those linear combinations that are actually used in the cipher).10

For large 𝑛, random Boolean functions have almost always algebraic degrees at least 𝑛 − 1, In11

fact, number of Boolean functions of algebraic degrees at most 𝑛−2 equals 2∑𝑛−2
𝑖=0 (�𝑛

𝑖 )�
= 22𝑛−𝑛−112

which is a fraction of 1/2𝑛+1 of the set of all 22𝑛 Boolean functions. However, functions of13

optimal algebraic degrees do not allow achieving some other characteristics, for instance we14

shall see that bent and almost bent functions (defined in Subsection 1.9.1.4 on the facing page)15

have algebraic degree at most 𝑛/2 and (𝑛 + 1)/2 respectively.16

A high algebraic degree is important because lower degree functions will be more easily at-17

tacked by means of algebraic attacks (see Section 2.8 on page 123 and in particular Subsec-18

tion 2.8.4 on page 125) or higher-order differential cryptanalysis (Subsection 2.1.5 on page 83):19

using lower degree functions can be offset by increasing the complexity of the cipher in other20

places, for instance by increasing the number of rounds – at the price of worse performance.21

The algebraic degree is an affine invariant.22

1.9.1.3 Algebraic Immunity23

Considering just the degree of a Boolean function is not sufficient, since Boolean functions may24

have multiples of low degrees, and these can be used instead – these multiples can arise from25

the way the various bits are combined in the cipher, and thus their corresponding functions.26

Hence the concept of algebraic immunity of a Boolean function 𝑓 ∶ 𝔽 𝑛
2 𝔽2, was introduced by27

Willi Meier, Enes Pasalic and Claude Carlet [MPC04] as the minimum degree of all annihilators28

of 𝑓 or 𝑓 + 1:29

𝒜𝒾( 𝑓 ) ∶= min {deg(𝑔) ∣ 𝑓 𝑔 = 0 ∨ ( 𝑓 + 1)𝑔 = 0, 𝑔 ≠ 0} .

In other words, only a function of degree at least𝒜𝒾( 𝑓 ) in the same inputs will “kill” the output30

of 𝑓 once a round constant or a fixed key bit is added to 𝑓 . It is also known [CM03, MPC04]31

that any function of degree 𝑛 must have an annihilator at the degree ⌈𝑛/2⌉, whence 𝒜𝒾( 𝑓 ) ⩽32

⌈deg( 𝑓 )/2⌉. This important characteristic is an affine invariant.33

There are several generalisations of the concept of algebraic immunity to (𝑛, 𝑚)-functions, some34

of which are more useful for function where 𝑚 is small with respect to 𝑛 (a common situation35

in stream ciphers) and somewhich are better when𝑚 and 𝑛 are comparable, as in block ciphers.36
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For the latter case a natural generalisation is the component algebraic immunity, defined as1

the minimal algebraic immunity of the component functions 𝐹𝑏 of the S-box 𝐹 for 𝑏 ≠ 0.2

1.9.1.4 Nonlinearity3

A single biased linear approximation of a block cipher – possibly with a few initial or final4

rounds omitted – is often sufficient to mount a successful linear attack against it (see Section 2.25

on page 91). Therefore we need to ensure that such an approximation cannot possibly exist.6

This can be achieved by choosing highly nonlinear S-boxes and then ensuring that the diffusion7

in the cipher forces all characteristics to cross a sufficiently high minimal number of “active” S-8

boxes. We consider here the non-linearity of the S-boxes.9

In order to approximate a Boolean function 𝑓 ∶= 𝔽 𝑛
2 𝔽2 we can consider its Walsh transform10

𝑓 𝓌(𝑎) = ∑
𝑥∈𝔽 𝑛

2

(−1) 𝑓 (𝑥)+⟨𝑎,𝑥⟩

where 𝑓 𝓌(𝑎) is called theWalsh coefficient of 𝑓 at the place 𝑎. A Boolean function 𝑓 is balanced11

if and only if 𝑓 𝓌(𝑎) = 0. The Walsh transform of 𝑓 is the Fourier transform of the sign function12

𝑓 𝜒 of 𝑓 , defined as 𝑓 𝜒(𝑥) = 1 if 𝑓 (𝑥) = 0 and 𝑓 𝜒(𝑥) = −1 if 𝑓 (𝑥) = 1, or, equivalently, 𝑓 𝜒(𝑥) =13

(−1) 𝑓 (𝑥). Also, note that if14

ℒ𝑎( 𝑓 ) = {𝑥 ∈ 𝔽 𝑛
2 ∣ ⟨𝑎, 𝑥⟩ = 𝑓 (𝑥)}

is the set of inputs where 𝑓 and the linear function 𝑥 ⟨𝑎, 𝑥⟩ agree, we have15

𝑓 𝓌(𝑎) = 2 #ℒ𝑎( 𝑓 ) − 2𝑛 .

If the Walsh coefficient of 𝑓 at place 𝑎 is positive, resp. negative, it is clear that the larger it16

is the better the function 𝑓 will be approximated by the linear function 𝑥 ⟨𝑎, 𝑥⟩, resp. the17

affine function 𝑥 1 + ⟨𝑎, 𝑥⟩. So we want Walsh coefficients that are close to zero, and such18

that the largest of them in absolute value is as small as possible. This leads to the definition of19

nonlinearity of a Boolean function 𝑓 ∶ 𝔽 𝑛
2 𝔽2:20

𝑛𝑙( 𝑓 ) ∶= 2𝑛−1 − 1
2 max

𝑎∈𝔽 𝑛
2

∣ 𝑓 𝓌(𝑎)∣ .

It is clear that we aim at finding functions with the highest nonlinearity possible: the reason21

being that 𝑛𝑙( 𝑓 )/2𝑛−1 is an upper bound for the likelihood that an affine relation holds between22

some input bits and the output bit. Now, Parseval’s Theorem states that∑𝑎∈𝔽 𝑛
2

𝑓 𝓌(𝑎)2 = 22𝑛, i.e.23

average of the squares of theWalsh coefficients is 2𝑛. From this it follows that the “best” nonlin-24

ear functions haveWalsh coefficient equal to 𝑓 𝓌(𝑎) = ±2𝑛/2 at all places 𝑎, thatmax𝑎∈𝔽 𝑛
2

∣ 𝑓 𝓌(𝑎)∣ ≥25

2𝑛/2 and, finally,26

𝑛𝑙( 𝑓 ) ≥ 2𝑛−1 − 2𝑛/2−1 . (1.8)

This bound is tight, and is also called the covering radius bound, since this is the value of the27

covering radius of the Reed-Muller code of order 1 for 𝑛 even. The functions that achieve bound28

(1.8) are calledbent functions because they are as different as possible (in the sense ofHamming29

weight of the difference) – and in fact equidistant – from all linear and affine functions. They30

have been investigated in the ’60s by Oscar Rothaus in research that was not published until31
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1976 [Rot76]. Clearly, bent functions exist only for 𝑛 even.1

The concept of Walsh coefficient is easily generalised to (𝑛, 𝑚)-functions 𝐹 by simply replacing2

the single-bit valued 𝑓 in the original definition with the component functions of 𝐹:3

𝐹𝓌
𝑏 (𝑎) = ∑

𝑥∈𝔽 4
2

(−1)⟨𝑏,𝐹(𝑥)⟩+⟨𝑎,𝑥⟩ . (1.9)

Then, we define the nonlinearity of a (𝑛, 𝑚)-function 𝐹 as the minimum of the nonlinearities of4

all its component functions, i.e.:5

𝑛𝑙(𝐹) ∶= 2𝑛−1 − 1
2 max

𝑎∈𝔽 𝑛
2

𝑏∈𝔽 𝑛
2 ,𝑏≠0

∣𝐹𝓌
𝑏 (𝑎)∣ .

As for Boolean functions, 𝑛𝑙(𝐹)/2𝑛−1 gives an upper bound for the likelihood that an affine6

relation between some of the input bits and at least one of the output bits holds.7

Vladimir Sidelnikov [Sid71] and, independently, Florent Chabaud and Serge Vaudenay [CV94],8

proved following bound on the nonlinearity of a (𝑛, 𝑚)-function with 𝑛 ⩾ 𝑚 − 1:9

𝑛𝑙(𝐹) ⩽ 2𝑛−1 − 1
2

√3 × 2𝑛 − 2 − 2 (2𝑛 − 1)(2𝑛−1 − 1)
2𝑚 − 1 . (1.10)

This is called the Sidelnikov-Chabaud-Vaudenay bound in [Car10b], and it can be tight only10

if 𝑛 = 𝑚 with 𝑛 odd.11

Similarly to the definition of bent Boolean function, we say that a vectorial Boolean function 𝐹12

is bent if (1.8) holds with equality. It is easy to see that the notion of bent vectorial function is13

invariant by addition of affine functions and under composition on the left and on the right by14

affine automorphisms. By definition, a (𝑛, 𝑚)-function is bent if and only if all of the nonzero15

component functions are bent. Bent (𝑛, 𝑚)-functions exist only if 𝑛 is even and𝑚 ⩽ 𝑛/2 – in par-16

ticular there are no bent permutations of 𝔽 𝑛
2 , as proved by Kaisa Nyberg in [Nyb91]. Also, the17

algebraic degree of a bent function with 𝑛 ⩾ 4 is at most 𝑛/2, as proved in [Rot76]. More refined18

bounds on the degree of bent functions have been proved by Xiang-Dong Hou in [Hou00] (the19

result is also given as Proposition 19 in [Car10a]).20

Nyberg suggested two constructions of bent S-boxes, one based on the Maiorana-McFarland21

construction and one based on Dillon’s construction of difference sets. For more details and22

references see [Nyb91]. Further references and constructions can be found in [Car10a, Car10b].23

Also, already in 1988 Réjane Forré observed that the Walsh transform of a function could be24

used to verify whether a vectorial Boolean function satisfies the strict avalanche criterion (cf.25

Subsection 1.9.1.6 on page 62). It turns out that the functions satisfying the SAC to the highest26

possible order (i.e. functions that are SAC even if an arbitrary number of input bits are fixed)27

are bent [AT90b] – in other words they are ideal candidates to achieve good diffusion.28

Ideal diffusion properties, resistance to linear cryptanalysis as well as to differential cryptanaly-29

sis (as we shall see in the next Subsection) may lead us to the conclusion that bent functions are30

the perfect choice to construct secure cryptographic primitives. However, they are not balanced,31

which means that they cannot be used directly to construct invertible S-boxes, and they also32

60



1.9. CONFUSION

“funnel” the input to a half-size output at best, which also complicates the constructions. There-1

fore a more common approach is to start with bent functions and modify them by augmenting2

the output in order to obtain balanced functions that still attain high nonlinearity [MS89].3

An important relaxing of the bentness condition is given by almost bent (AB) functions. A (𝑛, 𝑛)-4

function 𝐹 is almost bent if they achieve the bound (1.10)with equality, i.e. 𝐹𝓌
𝑏 (𝑎) ∈ {0, ±2(𝑛+1)/2}5

at all places 𝑎. Almost bent functions exist only for 𝑛 odd. They have degree at most (𝑛 +6

1)/2 [CCZ98]. The name “almost bent” may be confusing because it may lead to think that they7

are not optimal, but they are – bent (𝑛, 𝑛)-functions do not exist.8

Natalia Tokareva in [Tok11] gives a survey of generalisations of bent functions.9

1.9.1.5 Differential Uniformity10

To make differential cryptanalysis difficult (Section 2.1 on page 73), for each input difference 𝛥,11

the set of output differences 𝑆(𝑥) − 𝑆(𝑥 + 𝛥) of an S-box 𝑆 should have a as uniform distribution12

as possible, so that even when some output differences occur more often for given input differ-13

ences, they do not stand out in a particular way. This is measured by (differential) uniformity:14

For a (𝑛, 𝑚)-function 𝐹 we define the differetial of 𝐹 at the point 𝑐15

𝛥𝑐𝐹(𝑥) ∶= 𝐹(𝑥 ⊕ 𝑐) ⊕ 𝐹(𝑥)

(a more general definition for functions over rings is 𝛥𝑐𝐹(𝑥) ∶= 𝐹(𝑥 + 𝑐) − 𝐹(𝑥)) and the value16

𝛿𝐹 ∶= max
𝑐∈𝔽 𝑚

2 .𝑐≠0
𝑎∈𝔽 𝑚

2

∣ �𝛥−1
𝐹,𝑐(𝑎)∣ �

is called the (differential) uniformity of 𝐹.17

Since 𝛥𝑐𝐹(𝑥) is a (𝑛, 𝑚)-function, we trivially have the tight bound 𝛿 ⩾ 2𝑛−𝑚. If this bound is18

attained, the function 𝐹 is called perfect nonlinear (PN) – thismeans that each 𝛥𝑐𝐹(𝑥)with 𝑐 ≠ 019

is balanced, and conversely if each 𝛥𝑐𝐹(𝑥) with 𝑐 ≠ 0 is balanced then 𝐹 is PN. It was proven by20

Willi Meier and Othmar Staffelbach in [MS89] that a function is PN if and only if it is bent. This21

result was generalised to fields of arbitrary characteristic by Kaisa Nyberg in [Nyb90]. This is22

a strong link between resistance to linear and differential cryptanalysis, and also implies that23

PN (𝑛, 𝑚)-functions only exist if 𝑚 ⩽ 𝑛/2.24

Let us now consider the cryptographically important case 𝑛 = 𝑚: it is clear that all ∣ �(𝛥𝑐𝐹)−1(𝑎)∣ �25

are even (so they cannot be 2𝑛−𝑛 = 1) and not all can be zero, so 𝛿𝐹 ⩾ 2. Functions with 𝑚 = 𝑛26

attaining this lower bound are called APN (Almost-Perfect Nonlinear) functions.27

Since, for modern cipher design the S-box usually is bijective, of particular interest are bijective28

APN functions, called APN permutations. If a function is APN and bijective, then the inverse29

is also APN.30

APNpermutations exist, and they are plenty in odddimension – ifwe identify 𝔽 𝑛
2 for odd 𝑛with31

the Galois field 𝔽2𝑛 we can use either cubing or inversion (other exponents can be used as well).32

As a result, for instance, 𝑆(𝑥) = 𝑥3 in any odd binary field is immune to differential and linear33

cryptanalysis. This is in part why the MISTY designs (see Subsection 3.18.8 on page 176) use 7-34

and 9-bit functions in the 16-bit non-linear function. (What these functions gain in immunity35

to low order differential and linear attacks they lose to higher order differential cryptanalysis36

61



CHAPTER 1. DESIGN

and algebraic attacks, i.e. they can be described and solved via a SAT solver.)1

The search for APN permutations in even dimensions, which are highly desirable, is more dif-2

ficult. Until recently it was not known whether they existed at all. At the Fq9 conference in3

2009 John Dillon announced an APN permutation on 𝔽26 [BDMW10]. It is not known whether4

there are other examples. Hence, in general, the best one can realistically hope to find for a5

(𝑛, 𝑛)-function 𝐹 with 𝑛 even is 𝛿𝐹 = 4 – there are plenty of functions with this property, for6

instance field inversion in 𝔽2𝑛 . The fact that field inversion in 𝔽2𝑛 has 𝛿𝐹 = 2 for 𝑛 odd and7

𝛿𝐹 = 4 for 𝑛 = 2 is proved by Kaisa Nyberg in [Nyb93], where she attributes the observation8

to Lars Knudsen. This result will later influence the choice of the AES S-box cf. Section 3.20 on9

page 182.10

In the same paper, Nyberg studies other power functions as well. She also consider mappings11

derived from exponential functions in prime fields (such as those used in the SAFER family –12

cf. Section 3.8 on page 150): she proves (Proposition 7 in [Nyb93]) that a mapping from the of13

integers modulo a prime 𝑝 defined as exponentiation of element of order 𝑝 − 1 in 𝔽𝑝 is differen-14

tially 2-uniformwith respect to additionmodulo 𝑝 (the binary differential uniformity is usually15

different). The type of differential uniformity determined also the principal type of operation16

in the cipher, and this explains why the main operation in SAFER is the modular addition.17

There are some important relations between almost bent functions and APN functions:18

1. AB functions are APN. To formulate a more precise result, let us first define plateaued func-19

tions: A (𝑛, 𝑚)-function is called plateaued if, for every nonzero 𝑐 ∈ 𝔽 𝑚
2 , the component20

function 𝐹𝑐 is plateaued, that is, there exists a positive integer 𝜈𝑐 (called the amplitude of the21

plateaued Boolean function) such that the Walsh spectrum of 𝐹𝑐 is {0, ±𝜈𝑐}.22

Now, a (𝑛, 𝑛) function 𝐹 is AB if and only if it is APN and all its nonzero component functions are23

plateaued with the same amplitude. A proof of this result can be found in [Car10b].24

2. A quadratic (𝑛, 𝑛)-function 𝐹 with 𝑛 odd is almost bent.25

Further requirements are discussed in Subsection 2.1.10 on page 90.26

1.9.1.6 Strict Avalanche Criterion and Propagation Criterion27

We already defined the strict avalanche criterion [WT85]. For a S-box it is simply formulated as:28

Complementing a single bit in the input to an S-box should change a bit in the output with probability29

1/2, for any input bit and for any output bit.30

A more general definition is the following: A Boolean function on 𝑛 variables satisfies the SAC of31

order 𝑘, 0 ⩽ 𝑘 ⩽ 𝑛 − 2, if whenever 𝑘 arbitrary input bits are fixed, the resulting function of 𝑛 − 𝑘32

variables satisfies the SAC.33

The SAC and the higher order SAC are strong criteria that guarantee that every input bit change34

diffuses to all output bits with equal likelihood, and thus contributes in a significant way to35

diffusion.36

Many generalisations of the SAC exist, such as the propagation criterion (PC) [Pre93, PLL+90,37

PGV91] due to Bart Preneel et al. A (𝑛, 𝑚)-function 𝐹 satisfies the propagation criterion with38

respect to the set 𝐸 ⊆ 𝔽 𝑛
2 if, for all 𝑐 ∈ 𝐸, the differential 𝛥𝑐𝐹(𝑥) is balanced. The set 𝐸 is39

usually taken to be the set of nonzero vectors of Hamming weight up to ℓ, and the criterion40
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is then written as PC(ℓ). Also, if 𝑘 inputs are kept fixed, we have the PC or the PC(ℓ) of order1

𝑘. In general, these criteria are not affine invariant. The propagation criterion can be viewed2

as a weaker form of bentness or of perfect nonlinearity, and, indeed, bent functions satisfy the3

propagation criterion with respect to the set of nonzero vectors.4

1.9.1.7 Other Criteria5

Countless criteria had been suggested in the literature to measure how a S-box contributes to6

confusion and diffusion. We briefly summarise here just two more.7

1. Non-existence of Nonzero Linear Structure [Eve87]: Nonlinear cryptographic functions8

used in block ciphers should have no nonzero linear structure, i.e. vectors 𝑐 such that 𝛥𝑐𝐹(𝑥)9

is constant. If such a vector 𝑐 existed, this could give rise to differential characteristics of10

high likelihood.11

2. In [MS89] Willi Meier and Othmar Staffelbach introduced an interesting generalisation of12

nonlinearity. Thedistance to linear structures of a Boolean function is defined as its distance13

to the set of all Boolean functions admitting nonzero linear structures. The latter include14

all affine functions, and therefore the distance to linear structures this distance is bounded15

from above by the nonlinearity, but also other functions, for instance the non bent quadratic16

functions. The distance of a Boolean function in 𝑛 variables to linear structures equals 2𝑛−217

if and only if it is bent, as proved in [Car10a, Section 4.1.5].18

1.10 Less Beaten Paths19

1.10.1 Taking Inspiration From Stream Ciphers20

In 1999 [GG99] Guang Gong and Solomon Golomb observed that many block ciphers can be21

viewed as a Non Linear Feedback Shift Register (NLFSR) with input. This includes most SPN22

and Feistel Network designs.23

From their analysis they concluded that the S-box should not only not be approximated by a lin-24

ear function, but it should also not be approximated by a monomial. One can thus ask whether25

one should turn their remark into a design concept, and explicitly use NLFSRs to design block26

ciphers: the plaintext is used to initialize the state, the key provides the input, and the state af-27

ter sufficiently many rounds is the ciphertext. The key observation here is that the changes per28

round may be minimal, but they can be expressed as nonlinear, non-monomial transforms of29

low degree, and a round can be executed extremely quickly – therefore one can pile up enough30

rounds to get the desired confusion and diffusion and at the same time guarantee that the ci-31

pher can only be approximated by a polynomial of prohibitively high degree.32

This approach was in fact realized already in the mid 80’s in the design of KeeLoq (Section 3.3.333

on page 138). KATAN (Section 3.31 on page 209) is another, more recent, example of such a34

cipher.35

Other ciphers take inspiration from stream ciphers for the key schedule. For instance, SIMON36

and SPECK (Section 3.36 on page 222), use LFSRs to generate the round keys.37
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1.10.2 Hybrid Designs1

Because of the countless variations in both Feistel, SPNs and Lai-Massey designs, unavoidably2

there are ciphers which resemble more then one design, or even combine them.3

TWINE (Section 3.34 on page 215) blurs the line between the classic Feistel and SP networks: It4

is a Feistel-like design with a total of 16 branches, and the branches are shuffled by a complex5

permutation based on colored de Bruijn graphs in place of a simple cyclic rotation. Therefore6

we have a “partial” substitution layer alternated with a bit-permutation layer that operated on7

16 nibbles. We discussed shuffle design in Subsection 1.8.2 on page 44.8

ZORRO (cf. Subsection 3.38.2 on page 231) is an AES-like cipher that represents its state as 169

nibbles, so it is a SPN. But, at each round the S-boxes are applied only to four of the 16 nibbles.10

Thismeans that the cipher can be viewed represented asMatsui-like FeistelNetworkwith linear11

mixing layers in place of the branch permutations.12

SC2000 (cf. Section 3.22 on page 194) is unique in that it mixes SPN-like and Feistel-type rounds13

in the data obfuscation path: it is the only such cipher we are aware of.14

TheBielorussian standard block cipher BEL-T (Section 3.33 onpage 214) combines Feistel rounds15

with Lai-Massey rounds in a single round.16

1.10.3 Decorrelation Theory17

Serge Vaudenay presented in [Vau98b] and further analysed in [Vau03] methods to harden18

a cipher against linear and differential attacks. To achieve this he introduced the concept of19

decorrelation, to measure the “distance” of a cipher from a perfect cipher with respect to linear20

and differential properties.21

Decorrelation is defined as follows:22

• Given a function 𝐹 from a given set ℳ to a given set 𝒩 and an integer 𝑑, the d-wise distribution23

matrix [𝐹]𝑑 of 𝐹 is defined as the ℳ𝑑 × 𝒩 𝑑-matrix where the (𝑥, 𝑦)-entry of [𝐹]𝑑 corresponding to24

the multipoints x = (𝑥1, … , 𝑥𝑑) ∈ ℳ𝑑 and y = (𝑦1, … , 𝑦𝑑) ∈ 𝒩 𝑑 is the probability that we have25

𝐹(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, … , 𝑑.26

• Given two functions 𝐹 and 𝐺 from a given set ℳ to a given set 𝒩 , an integer 𝑑 and a multiplicative27

distance 𝐿 over the vector space ℝℳ𝑑×𝒩 𝑑 defined by a matrix norm, we call 𝐿([𝐹]𝑑, [𝐺]𝑑) the 𝑑-wise28

L-decorrelation between 𝐹 and 𝐺.29

The goal of the designers of block ciphers is to minimise the decorrelation between their func-30

tions and an ideal cipher with respect to suitable metrics. If we define 𝐿([𝐹]𝑑) as 𝐿([𝐹]𝑑, [𝐶∗]𝑑)31

where 𝐶∗ is an ideal cipher, from the multiplicative property of matrix norms it holds that32

𝐿([𝐹 ∘ 𝐺]𝑑) ⩽ 𝐿([𝐹]𝑑) ⋅ 𝐿([𝐺]𝑑) .

This enables the designers to build ciphers with bounded low decorrelation as block ciphers.33

Taking 𝑑 = 1 allows to bound resistance against linear cryptanalysis and 𝑑 = 2 against linear34

and (first order) differential cryptanalysis. The number 𝑑 is called the order of the attack, hence35

in Vaudenay’s terminology [Vau99c] linear cryptanalysis is an iterated attack of order one and36

differential cryptanalysis is an iterated attack of order two.37
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Vaudenay considers various norms, such as the 𝐿2 norm, the infinity weighted pseudo-norm1

𝑁∞, the 𝐿∞-associated matrix norm |||⋅|||∞, and a new norm ‖ ⋅ ‖𝑎 defined in [Vau99a] as2

‖𝑀‖𝑎 = max𝑥1
∑
𝑦1

max𝑥2
∑
𝑦2

⋯ max𝑥𝑑
∑
𝑦𝑑

∣𝑀x,y∣

which is designed to model adaptive attacks. These norms serve to easily compute bounds on3

the success probabilities of guessing the output of a cipher, which can then be readily translated4

into attack complexities.5

An important result of Vaudenay’s regards Feistel ciphers. Theorem 9 of [Vau98b] states:6

Let 𝐹1, … , 𝐹𝑟, 𝑅 be 𝑟 independent functions on ℳ where 𝑅 has a uniform distribution and such that7

∣∣∣[𝐹𝑖]𝑑 − [𝑅]𝑑∣∣∣∞ ⩽ 𝜖 for 𝑖 = 1, … , 𝑟. Let 𝛹(𝐹1, … , 𝐹𝑟) denote the Feistel cipher with 𝐹1, … , 𝐹𝑟 as8

F-functions and 𝐶∗ the corresponding perfect cipher. For any 𝑘 ⩾ 3 we have:9

∣∣∣[𝛹(𝐹1, … , 𝐹𝑟)]𝑑 − [𝐶∗]𝑑∣∣∣∞ ⩽ (�(1 + 𝜖)𝑘 − 1 + 2𝑑2

√#ℳ )� .

This makes the |||⋅|||∞-decorrelation a useful tool for constructing Feistel ciphers. (Similar results10

are proved in [Vau03] for Lai-Massey ciphers with orthomorphisms; this type of ciphers is11

defined in Section 1.5 on page 37).12

Decorrelation is achieved using decorrelation modules, i.e. simple functions for which decorrela-13

tion cane easily computed, which are then composed to construct a product cipher. An impor-14

tant class of decorrelation modules has the form15

𝐹(𝑥) = 𝑘1 + 𝑘2 ⋅ 𝑥 (1.11)

over a finite field 𝔽 , where 𝑘1 and 𝑘2 are secret keys taken uniformly from 𝔽 and 𝔽 ∗. In Vaude-16

nay’s terminology, this is a Type II NUT (𝑛-Universal Transformation), and this function offers17

perfect decorrelation, i.e. it has the same decorrelation as a perfect cipher over 𝔽 .18

If on the other hand the function defined in (1.11) is considered modulo 𝑝 where 𝑝 = (1 − 𝛿)2𝑚19

with 0 < 𝛿 < 1/14, but 𝑘1, 𝑘2 are independent uniformly distributed random variables in20

ℳ ∶= [0..2𝑚 − 1], and 𝐹∗ is a uniformly distributed random function from ℳ to ℳ, then21

‖[𝐹]2 − [𝐹∗]2‖2 ⩽ √8𝛿. Thus, this type of decorrelation modules can be used to provide resis-22

tance against differential cryptanalysis.23

A total of six different types of NUTs are discussed in [Vau03]. An important class is the Type24

IV NUT, of the form25

𝐹(𝑥) = (𝑘1 + 𝑘2𝑥 + 𝑘3𝑥2 + ⋯ + 𝑘𝑑𝑥𝑑−1 mod 𝑝) mod 2𝑚

where 𝑝 is a prime that this time is just slightly larger than 2𝑚. These NUTs are designed to26

provide resistance against adaptive adversaries evaluated by the ‖ ⋅ ‖𝑎 norm. The bound on the27

decorrelation is in this case given by ‖[𝐹]𝑑 − [𝐹∗]𝑑‖𝑎 ⩽ 2((1 + 𝛿)𝑑 − 1).28

The DFC cipher (Subsection 3.19.2 on page 179) uses a Type IV linear NUT (i.e. with 𝑑 = 2) that29

mixes arithmetic modulo 264 + 13 and 264.30

Because of the form of many of Vaudenay’s decorrelation modules, his approach can thus be31

viewed as a formalisation, generalisation and quantification of the use of different, and mutu-32
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ally algebraically incompatible arithmetic operations for the purpose of achieving non-linearity1

(Section 1.9 on page 56).2

Besides DFC, ciphers constructed according to this principle include the COCONUT, PEANUT3

andWALNUT families (presented in [Vau98b]), andDONUT [CLLL00]. The 64-bit block cipher4

COCONUT consists of two small Feistel cipherswith a state-wide decorrelationmodule (a Type5

II NUT over 𝔽264) in the middle - the drawback being that decryption requires a field inversion.6

Most of the decorrelation theory is developed under the assumption that different functions7

used in a single cipher are assumed to be independent. In practice, however, these are instances8

of just a few types of keyed functions with different round keys. Indeed, in Vaudenay’s own9

words [Vau03], One problem with the COCONUT, PEANUT, or WALNUT constructions is that they10

require a long key (in order to make the internal random functions independent). In real-life examples11

we can generate this long key by using a pseudorandom generator fed with a short key, but the results12

on the security based on decorrelation are no longer valid. However, provided that the pseudorandom13

generator produces outputs which are indistinguishable from truly random sequences, we can still prove14

the security. This puts considerable weight on proper key schedule while in the design of using15

decorrelation theory, and makes the theory difficult to use in the context of lightweight block16

cipher design in most circumstances.17

Serge Vaudenay has made a wealth of information about DFC and the theory of decorrelation18

modules available online [Vau00, Vau02].19

In 2006 two papers coauthored by Thomas Baignères andMatthieu Finiasz have been published20

that present an interesting application of decorrelation theory. These deal with the block ci-21

phers “C” [BF06a] and KFC, the “Krazy Feistel Cipher” [BF06b].22

The cipher C follows the same SPN as the AES (Section 3.20 on page 182), i.e. the wide trails de-23

sign represented in Figure 1.5 on page 35, but with following differences: there is no round key24

addition, and the substitution layer is formed by 16 independent perfectly random permutations25

instead of 16 copies of a fixed substitution box. Here, perfectly randompermutations refers that26

the permutations are uniformly chosen among all permutations of a given set, and independent27

refers to the fact that a (pseudo) random number generator is used to select them. Since an28

arbitrary permutation of the set 𝑆 = [0, .., 255] can be described by ⌈log2(28!)⌉ = 1, 684 bits, an29

algorithm is provided to turn 1,684 bits into a permutation of 𝑆, and the key schedule expands30

the secret key to 160 × 1, 684 = 269, 440 to describe a total of 160 random permutations on 𝑆.31

The key expansion uses the Blum-Blum-Shub (BBS) PRNG, i.e. the PRNG proposed in 1986 by32

Lenore Blum, Manuel Blum andMichael Shub in [BBS86], that consists of repeated squaring of33

a seed modulo a RSA modulo.34

Resistance to linear and differential cryptanalysis, including impossible differential cryptanal-35

ysis is proved - but the key schedule makes the algorithm impractical in many contexts.36

In order to optimise this construction, a smaller set 𝒟 of mutually decorrelated S-boxes is used37

in [BF06a]. Some options are given by the following families of permutations that guarantee38

protection against order one and two attacks, i.e. against linear and differential cryptanalysis:39

• The set 𝒟 = {𝑋 𝐴 ⊕ 𝐵 ⋅ 𝑆(𝑋) | 𝐴, 𝐵 ∈ 𝔽28 , 𝐵 ≠ 0} defined by Kazumaro Aoki and Serge40

Vaudenay in [AV03], where 𝑆 is any fixed permutation of 𝔽28 and “⋅” is field multiplication.41

• The set 𝒟 = {𝑋 𝐴 ⊕ 𝐵 ⋅ 𝑋−1 | 𝐴, 𝐵 ∈ 𝔽28 , 𝐵 ≠ 0}, defined in [BF06a].42
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Each element in the sets can be defined by 16 output bits of the BBS PRNG, where the values1

corresponding to 𝐵 = 0 can be skipped, and the next value is used, so on average 2,570 output2

bits are needed in place of 269,440. It is proved that the permutation family reduced versions3

of the cipher are no less secure than the general version. Another optimisation option is to use4

a different PRNG, for instance a fast stream cipher, to speed up the key schedule (however, this5

in general loses some of the assumptions upon which the proofs of security of C rely).6

The analysis framework is the one developed in [BV05] by Thomas Baignères and Serge Vaude-7

nay to analyse the intrinsic security of the AES SPN.8

One issue with C is that it requires random permutations, and using random functions would9

make the whole key scheduling process faster. This is solved in the design of KFC. KFC is a10

three round Feistel network, where the F-function is a SPN constructed similarly to C, but us-11

ing random functions in place of random permutations – the resulting function is no longer12

injective, but this is not a problem in a Luby–Rackoff cipher. In order to make it difficult for13

an attacker to successfully exploit collisions, the first and last substitution layers are still con-14

structed from random permutations.15

Pierre-Alain Fouque and Pierre Karpman in [FK13a, FK13b] strengthen the FX construction16

(Section 1.6 on page 38) against MITM attacks (Section 2.4 on page 97) by using families of17

decorrelation modules (parametrised by keys) in place of simple key whitening.18

1.11 Relations to Other Symmetric Constructions19

One of themany aspects of block ciphers thatmake them very interesting is that they are closely20

related all other important symmetric primitives, such as stream ciphers and hash functions. In21

this section we recall these relations and mention some important theoretical constructions.22

1.11.1 Block Ciphers and Stream Ciphers23

Themost obvious relation between block ciphers and stream ciphers is the use of a specialmode24

of operation to turn an instance of the former into an instance of the latter.25

The output feedback (OFB)mode of operation [Dwo01] turns a block cipher into a synchronous26

stream cipher by repeatedly encrypting an initialisation vector IV and XORing the results to the27

plaintext blocks 𝑃0, 𝑃1, …:28

𝐶𝑖 = 𝑃𝑖 ⊕ 𝐼𝑖 where 𝐼𝑖 = 𝐸𝐾(𝐼𝑖−1) for 𝑖 = 0, 1, 2, … and 𝐼−1 = IV .

The same sequence of operations, with 𝑃𝑖 and 𝐶𝑖 swapped, is used to decrypt the ciphertext.29

Other modes of operation, such as cipher feedback mode (CFB), turn a block cipher into a self-30

synchronizing stream cipher. Counter mode (CTR) encrypts a text formed by concatenating a31

nonce and a increasing counter to obtain successive keystream blocks, which are then XORed32

to the plaintext blocks to obtain the ciphertext blocks. More modes exist that turn a block33

cipher into a stream cipher, but we are not interested in giving a full treatment of such modes34

of operation.35

The opposite transformation is possible as well. A computationally expensive constructionwas36

presented by Louis Granboulan and Thomas Pornin at FSE 2007 [GP07], which is mostly of the-37

oretic interest. The idea consists in getting sufficient random data to completely determine a38
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Durstenfeld shuffle [Dur64]3. The paper uses a PRNG but a stream cipher can naturally be used1

instead for such a purpose. Using 𝑂(log 𝑏) space and 𝑂((log 𝑏)3) PRNG invocations, the con-2

struction produces a random permutation over a set of 𝑚 elements, uniformly selected among3

the 𝑏! possibilities, where 𝑏 is the block size. The key size is the size of the PRNG seed.4

Some constructions explained later can also be used, such as BEAR, LION, LIONESS, and5

AARDVARK. These require, beside a stream cipher, also a hash function. The latter can be6

built from a stream cipher by using, for instance, the Toeplitz matrix construction due to Hugo7

Krawczyk [Kra94], using the stream cipher in place of the LFSR.8

1.11.2 Block Ciphers and Hash Functions9

Besides turning a block cipher into a stream cipher and then using the latter to construct a hash10

function, there are several methods that can be used to build a cryptographic hash function11

from a block cipher.12

These usually take a one-way compression function, (i.e. a function that takes two fixed length13

inputs and produces a fixed length output of the same size as one of the inputs – and that14

is one-way [Gol98, §1.2.1]). A one-way compression function resembles a block cipher, and15

in fact it can often be easily constructed from a block cipher, usually by XORing one or both16

of its inputs to the output of the block cipher, in order to break its bijectivity. The one-way17

compression function is then used in an algorithm that resembles the common block cipher18

modes of operation used to encrypt arbitrarily long plaintexts: the compression function is19

called repeatedly with the output of the previous iteration as one of its inputs and the current20

message block as its second input. The message is suitably padded, then length of the message21

is usually appended to the padded message itself, and the output of the final application of the22

compression function is the tag.23

There are several constructions that turn a block cipher into a compression function, for in-24

stance the Matyas–Meyer–Oseas [MMO85], the so-called Davies–Meyer scheme4, Miyaguchi–25

Preneel [ISO91, MIO89, PGV93], and Hirose [Hir06]. These and many other schemes are anal-26

ysed in [PGV93]: in fact a total of 64 different schemes are compared there, of which 12 are27

found to be secure.28

Many well-known hash functions, including MD4 [Riv90], MD5 (see RFC 1321), SHA-1 and29

SHA-2 [NIS12], andWHIRLPOOL [BR11a] are built in this way starting from custom designed30

block-cipher-like components. The reason for the use of custom ciphers is that some features,31

such as very large keys and blocks, and key agility, are notmet by standard block ciphers such as32

the AES. Furthermore, in many hash function constructions it is important that the underlying33

block cipher does not have equivalent keys: whereas this is often just a minor weakness for the34

block cipher when used for encryption, it can be a catastrophic weakness for the derived hash35

function.36

The cipher block chaining message authentication code (CBC-MAC) [ISO99], and its variation37

3This algorithm was popularised by Donald Knuth [Knu97, § 3.4.2, Algorithm P (Shuffling)] and therefore it is
often known as Knuth shuffle. Knuth attributes it to Ronald Aylmer Fisher and Frank Yates [FY38] and claims that
Richard Durstenfeld republished it. Derek O’Connor [O’C11b, O’C11a] argues that Durstenfeld’s algorithm is not
the same as the Fisher–Yates shuffle. Also, note that later editions of [FY38] replace the original algorithm with a
different shuffling algorithm they attribute to Calyampudi Radhakrishna Rao.

4This scheme is attributed to D. Davies in [Win83, Win84], but Davies himself attributed it to C. Meyer in [DP84]
and confirmed in a personal communication to the authors of [PGV93] that he did not develop the construction.
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Cipher-basedMAC (CMAC) [Dwo05], One-keyMAC (OMAC) and ParallelizableMAC (PMAC,1

created by Phil Rogaway) are standardised methods to turn block ciphers into message authen-2

tication codes (MACs).3

A hash function can be turned into a stream cipher if used in CTR mode. From this, since the4

hash function in CTR mode can be viewed as a PRNG, one could use the Granboulan–Pornin5

construction to turn it into a block cipher.6

In [Sch96, § 14.11], Bruce Schneier shows how to use a hash function as a block cipher in CFB7

mode8
𝐶𝑖 𝑃𝑖 ⊕ 𝐻(𝐾‖𝐶𝑖−1)
𝑃𝑖 𝐶𝑖 ⊕ 𝐻(𝐾‖𝐶𝑖−1)

together with other constructions.9

Amore direct approach follows the Luby-Rackhoff construction [LR86] (see also Section 1.3 on10

page 28): under the assumption that the has function is a cryptographically secure pseudoran-11

dom function, then three, resp. four rounds are are sufficient to create a block cipher that is12

pseudorandom permutation, resp. a “strong” pseudorandom permutation, and the block size13

is twice the size of the output of the hash function.14

A remark by Schneier in [Sch96, § 14.11] applies to these last two constructions: “While these15

constructions can be secure, they depend on the choice of the underlying one-way hash function. A16

good one-way hash function doesnot necessarily make a secure encryption algorithm. Cryptographic17

requirements are different. For example, linear cryptanalysis is not a viable attack against one-way hash18

functions, but works against encryption algorithms.”19

One way to both exploit the fact that hash functions accept inputs of arbitrary length and to20

provide better security, due to Ross Anderson and Eli Biham, will be described in the next21

subsection.22

1.11.3 BEAR, LION, LIONESS, and AARDVARK23

At FSE 1996, Ross Anderson and Eli Biham presented [AB96] three new block cipher designs,24

inspired by the results of Luby and Rachoff [LR86]. The three designs use a stream cipher 𝑆25

and a (keyed) hash function 𝐻 to construct block ciphers. They are a variant of the unbalanced26

Feistel cipher design that does not repartition the output of a round - rather, they alternate27

source-heavywith target-heavy rounds. The resulting cipher is called an alternating Feistel cipher28

by Hoang and Rogaway in [HR10a, HR10b].29

Let 𝑛 be the block size (expressed in bits), which will typically be large - from 1 Kb to even30

several Mb. The keyed hash function uses a key 𝐾 and compresses a message 𝑀 of arbitrary31

length to a fixed size hash of 𝑘 bits. The stream cipher takes a 𝑘-bit input and generates an32

arbitrarily long keystream.33

BEAR is defined as follows. The plaintext 𝑃 is divided into two parts 𝐿 and 𝑅 whose sizes are34

|𝐿| = 𝑘 and |𝑅| = 𝑛 − 𝑘. The key consists of two (independent) sub keys 𝐾 = (𝐾1, 𝐾2), each of35
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Figure 1.8: BEAR

𝐿 𝐾1 𝑅

∗ 𝐻

𝐿′ 𝑅

𝑆 ∗

𝐿′ 𝐾2 𝑅′

∗ 𝐻

𝐿″ 𝑅′

Figure 1.9: LION

𝐿 𝐾1 𝑅

𝑆 ∗

𝐿 𝑅′

∗ 𝐻

𝐿′ 𝐾2 𝑅′

𝑆 ∗

𝐿′ 𝑅″

Figure 1.10: LIONESS

𝐿 𝐾1 𝑅

𝑆 ∗

𝐿 𝐾2 𝑅′

∗ 𝐻

𝐿′ 𝐾3 𝑅′

𝑆 ∗

𝐿′ 𝐾4 𝑅″

∗ 𝐻

𝐿″ 𝑅″

which have length greater than 𝑘. Encryption is done by1

𝐿′ 𝐿 ∗ 𝐻𝐾1
(𝑅)

𝑅′ 𝑅 ∗ 𝑆(𝐿′)
𝐿″ 𝐿′ ∗ 𝐻𝐾2

(𝑅′)

where ∘ is an invertible composition operation, such as bitwise XOR, word-wise or long integer2

addition, or even finite field multiplication à la IDEA (cf. Section 3.6 on page 144). The cipher-3

text is then the concatenation 𝐿″‖𝑅′. BEAR encryption is represented graphically in Figure 1.8.4

Decryption is performed by executing the inverse steps.5

It is assumed that the keyed hash function 𝐻:6

(a) is one-way and collision-free, i.e. it is hard given 𝑌 to find 𝑋 such that 𝐻𝐾(𝑋) = 𝑌, and to7

find unequal 𝑋 and 𝑌 such that 𝐻𝐾(𝑋) = 𝐻𝐾(𝑌), and8

(b) is pseudo-random, in that even given 𝐻𝐾(𝑋𝑖) for any set of inputs, it is hard to predict any9

bit of 𝐻𝐾(𝑌) for a new input 𝑌.10

It is also assumed that the stream cipher 𝑆(𝑀):11

(a) resists key recovery attacks, in that it is hard to find the seed 𝑋 given 𝑟 = 𝑆(𝑋);12

(b) resists expansion attacks, in that it is hard to expand any partial stream of 𝑌.13

Under these assumptions, Anderson and Biham prove that breaking BEAR implies breaking14

both the stream cipher and the hash function – and thus they achieve better security than the15

constructions exclusively based on the one-way function described in the previous subsection.16
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LION, depicted in Figure 1.9, is similar but it uses the stream cipher twice and the hash function1

(unkeyed) once:2

𝑅′ 𝑅 ∗ 𝑆(𝐿 ∘ 𝐾1)
𝐿′ 𝐿 ∗ 𝐻(𝑅′)

𝑅″ 𝑅′ ∗ 𝑆(𝐿′ ∘ 𝐾2)
Also breaking LION implies breaking both the stream cipher and the hash function.3

Similarly to the Luby-Rackoff construction [LR86], the three-round ciphers BEAR and LION are4

provably secure against an attacker that only has access to an encryption or a decryption oracle,5

but not to both, and four rounds are necessary to thwart an attacker that has access to both. For6

this reason Anderson and Biham also introduce the four round cipher LIONESS – represented7

in Figure 1.10 – that invokes both the stream cipher and the hash function twice. It uses four8

sub keys, which are used to mask the stream cipher seed and to key the hash function:9

𝑅′ 𝑅 ∗ 𝑆(𝐿 ∘ 𝐾1)
𝐿′ 𝐿 ∗ 𝐻𝐾2

(𝑅′)
𝑅″ 𝑅′ ∗ 𝑆(𝐿′ ∘ 𝐾3)
𝐿″ 𝐿′ ∗ 𝐻𝐾4

(𝑅′)

Pat Morin showed [Mor96] that LION and BEAR are susceptible to meet-in-the-middle attacks,10

reducing the security margin by a constant factor, but not breaking the cipher. Morin also11

proposed another cipher, which he called AARDVARK, because “all the exotic animal names were12

already being used”. Let 𝐻 be a unkeyed hash function, and 𝐻′ a keyed hash function, both13

outputting 𝑘 bits, and 𝑆 a block cipher. AARDVARK encrypts the plaintext 𝑃 into a cryptogram14

𝐶∗‖𝐶′ as follows:15

𝐶∗ 𝐻(𝑃)
𝐶′ 𝑃 ⊕ 𝑆(𝐻′

𝐾(𝐶∗))
Decryption is then performed as 𝑃 = 𝐶′ ⊕ 𝑆(𝐻′

𝐾(𝐶∗)). This cipher has a significantly higher16

throughput than BEAR, LION, and LIONESS. In order to be secure, it requires𝐻 to be strongly17

collision free,𝐻′ to resist existential forgery, and 𝑆 to resist expansion attacks. It is characterised18

by a constant ciphertext expansion.19

Morin’s attack have been discussed in [MPRS11a] (preprint on arXiv: [MPRS11b]). The observa-20

tion is that “the attack succeeds only because its brute force search on the round function contradicts the21

key-resistance of the hash function and of the stream function. So, whenever 𝐻 or 𝑆 remain key-resistant,22

both LION and BEAR are immune to such attacks.” The authors also show that these ciphers are23

actually immune to any efficient known-plaintext key-recovery attack that can use as input any24

number of plaintext-ciphertext pairs – even if the assumptions on the hash function and stream25

cipher are slightly weakened. Improvements on BEAR and LION, called BEAR2 and LION2,26

are presented, that key also the stream cipher by XORing a key to its input.27
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Chapter 21

Cryptanalysis2

If you reveal your secrets to the wind, you should not blame the wind for revealing them to3

the trees.4

Kahlil Gibran5

In this chapter we describemathematical attacks to block ciphers. We do not describe hardware6

attacks such as side-channel attacks and fault attacks.7

2.1 Differential Cryptanalysis8

Differential cryptanalysis is the first general cryptanalytic technique specifically introduced to9

break block ciphers. The main idea of differential cryptanalysis is to exploit properties of a10

cipher 𝐸 like “if 𝑃 and 𝑃∗ are two plaintext blocks such that 𝛥𝑃 = 𝑃 ⊕ 𝑃∗, then it is likely that11

𝛥𝐶 = 𝐸(𝑃) ⊕ 𝐸(𝑃∗) = 𝐸(𝑃) ⊕ 𝐸(𝑃 ⊕ 𝛥𝑃).” Such correlations between differences in the inputs12

and outputs of a non-ideal block cipher are used to recover the key, usually through a chosen-13

plaintext attack.14

Differential cryptanalysis made its first appearance in the scientific literature in Biham and Adi15

Shamir’s papers on DES-like ciphers [BS90, BS91a] and the first application to real ciphers was16

to FEAL [BS91c]. The technique did not receive much attention until it was further generalised17

and applied to DES [BS92]. DES shows a certain resistance to differential cryptanalysis which18

suggests that its designers knew about the technique a decade earlier. In fact, this was con-19

firmed by Coppersmith [Cop94]:20

After discussions with NSA, it was decided that disclosure of the design considerations21

would reveal the technique of differential cryptanalysis, a powerful technique that can be22

used against many ciphers. This in turn would weaken the competitive advantage the United23

States enjoy over other countries in the field of cryptography.24

2.1.1 Fundamentals of Differential Cryptanalysis25

The first observation that led to differential cryptanalysis is the following, that holds for most26

non linear mappings 𝛾. Consider all pairs of inputs (𝑥, 𝑥∗) to 𝛾 with a fixed non-zero difference27

𝛥𝑥 = 𝑥∗ − 𝑥, and the corresponding output differences 𝛾(𝑥∗) − 𝛾(𝑥). The output differences28

are in general not unique, but it is also true that these do not necessarily take all output values.29

In the particular case where the group operation + is the XOR, each output difference occurs30

an even number of times. It turns out that the statistical distribution of these differences often31

presents some irregularities. Furthermore, if we know both the input and output difference32
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Figure 2.1: Notation for the 0R Differential Cryptanalysis of a Simplified Feistel Cipher
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to such a function, and the function is small enough to allow it to be tabulated, we can list all1

possible input pairs that generate the given output difference.2

For each such non-linear function, such as a S-box, by enumerating all pairs with a given input3

difference, we obtain a distribution of output differences. So we choose an input difference4

such that a given output difference occurs with particularly high likelihood. Let us take the5

S-box S1 of DES, which is a 6 × 4 bit S-box, and thus it has 64 possible input differences. For the6

input difference 0x34 several output differences cannot occur (for instance 0x0 or 0x5) but7

the output difference 0x2 occurs 16 times – and we know the exact input pairs that generate8

this difference. We can thus predict with probability 1/4=16/64 that if the input difference is9

0x34, then the output difference is 0x2.10

So what happens if we do observe an output difference of 0x2? We know what actual input11

pairs could have generated it, and since one of these is equal to the chosen input pair XORed12

with the round key, we restricted the choice of the relevant round key bits to a fraction of the13

whole 6 bit input space, in this case 16 possible values out of 64.14

This immediately leads to 0R Attacks on Feistel Ciphers, which we now describe.15

2.1.1.1 Simple 0R Attacks on Feistel Ciphers16

Consider a 𝑛-bit Feistel cipher 𝐸 without expansion and compression in the 𝐹-Function, such17

as the one represented in Figure 2.1.18

Suppose that we know the following: For a plaintext difference 𝛥𝑃 = 𝛥(𝐿1‖𝑅1) the ciphertext19
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difference 𝛥𝐶 = 𝛥(𝐿𝑟+1‖𝑅𝑟+1) holds with probability 𝑝 > 2−𝑛.1

An important fact here is that while constructing the characteristic, we are computing the prob-2

ability that 𝛥(𝐿𝑖‖𝑅𝑖) 𝛥(𝐿𝑖+1‖𝑅𝑖+1) for 𝑖 = 1, 2, … , 𝑟 for differences 𝛥(𝐿𝑖‖𝑅𝑖)which are all known.3

The product of the probabilities 𝒫 [𝛥(𝐿𝑖‖𝑅𝑖) 𝛥(𝐿𝑖+1‖𝑅𝑖+1)] is a lower bound for the likelihood4

𝑝 = 𝒫 [𝛥𝑃 𝛥𝐶].5

We start collecting 𝑚 = 2/𝑝 plaintext/ciphertext pairs, and we hope to find at least one pair of6

plaintexts 𝑃, 𝑃∗ = 𝑃 + 𝛥𝑃 such that for 𝐶 = 𝐸(𝑃) and 𝐶∗ = 𝐸(𝑃∗) the relation 𝐶∗ = 𝐶 + 𝛥𝐶7

holds. The expected number of such pairs is 𝑚(𝑝 + 2−𝑛). Of these pairs, 𝑚𝑝 are right pairs, i.e.8

they result from the characteristic, and 𝑚2−𝑛 are wrong pairs, i.e. they occur by chance.9

In particular, for a right pair, we do not only know 𝛥𝐶, but also the difference 𝛥𝐿𝑟‖𝑅𝑟.10

If 𝑝 ≫ 2−𝑛 we can assume that all found pairs are right.11

For any such pair, we knowboth the input difference to 𝐹, that is equal to 𝛥𝐿𝑟+1 = 𝛥𝑅𝑟 – because12

adding the same round key to two values does not change their difference – and the output13

difference to 𝐹, that is equal to 𝛥𝐿𝑟 ⊕ 𝛥𝑅𝑟+1.14

Now suppose for simplicity that 𝐹 is a 𝛾𝜆 structure, i.e. it is formed by an array of S-boxes15

followed by a linear transformation.16

Inverting the linear transformation, we immediately determine the output differences at each17

S-box and since also the input difference is known, we have a list of possible candidate pairs for18

the input difference. Now, we know the actual inputs to the substitution layer: they are given19

by the left half of the ciphertext 𝑅𝑟 = 𝐿𝑟+1 XORed with the 𝑟-th round key 𝑘𝑟. This immediately20

gives a list of candidates for the key bits that are associated to each S-box.21

In general, the number of guesses for the key bits is smaller than all the possible choices by the22

same bits, and thus we can loop over these at each S-box and try all the possibilities for the23

remaining bits. We should be able to find the key in less than brute force time.24

2.1.1.2 Constructing Differential Characteristics25

Since finding correlated input and output differences for a complete cipher is in general a diffi-26

cult problem, the differences of the internal states are studied as they evolve through the various27

operations of a product cipher. This is important also because, as we have just seen, even in28

a simple differential attack we need intermediate differences beside the initial and final ones.29

Differential trails for the whole cipher are thus obtained by chaining smaller ones.30

Let the cipher be represented as the composition of several rounds31

𝐸 = 𝜌𝑟 ∘ ⋯ ∘ 𝜌2 ∘ 𝜌1 (2.1)

where we can assume that the 𝑖-th round function 𝜌𝑖 is keyed using round key 𝑘𝑖 = 𝜓𝑖(𝐾). In32

general the rounds are equal and can be represented as a function of the round key and of the33

state, so 𝜌𝑖 = 𝜌[𝑘𝑖], but we do not need this here. We shall also write34

𝐸𝑠 = 𝜌𝑠 ∘ 𝜌𝑠−1 ∘ ⋯ ∘ 𝜌1 for all 𝑠 ⩽ 𝑟

to denote truncated ciphers.35
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Let the plaintext be 𝑃1 = 𝑃 and 𝑃𝑖+1 = 𝜌𝑖(𝑃𝑖) for all 𝑖, we have that the ciphertext 𝐶 is given by1

𝐶 = 𝑃𝑟+1 = 𝜌𝑟(𝑃𝑟). Let 𝑃∗
𝑖 and 𝐶∗ be defined similarly for a second plaintext 𝑃∗ encrypted with2

the same key. For any quantity 𝑥 we define 𝛥𝑥 = 𝑥∗ − 𝑥. The cryptanalyst then studies how 𝛥𝑃𝑖3

and 𝛥𝑃𝑖+1 are correlated. For brevity’s sake we put4

𝛿𝑖 ∶= 𝛥𝑃𝑖 , 𝛥 ∶= 𝛥𝑃1 , and ∇ ∶= 𝛥𝑃𝑟+1 .

If 𝑝𝑖 denotes the probability of the transition 𝛿𝑖 𝛿𝑖+1, i.e.5

𝑝𝑖 = 𝑃𝜌𝑖
(𝛿𝑖, 𝛿𝑖+1) ∶= 𝒫 [𝜌𝑖(𝑥 + 𝛿𝑖) − 𝜌𝑖(𝑥) = 𝛿𝑖+1] ,

which is computed over all the keys, then we have the differential characteristic (or trail)6

𝛥 = 𝛿1 𝛿2 𝛿3 𝛿𝑟−1 𝛿𝑟 𝛿𝑟+1 = ∇ .
𝑝1 𝑝2 𝑝𝑟−1 𝑝𝑟

The nature of the operation used to compute 𝑃𝑖+1, resp. 𝑃∗
𝑖+1 from 𝑃𝑖, resp. 𝑃∗

𝑖 plays a funda-7

mental role in the determination of the 𝛿𝑖 and of the transition probabilities.8

Key-mixing by addition does not affect the differences, because (𝑠∗ +𝑘) − (𝑠+𝑘) = 𝑠∗ −𝑠 for all 𝑠9

and 𝑘. Linear and affine operations do not affect the differences, or affect them in a predictable10

way: If 𝜆 is a linear operation, then 𝜆(𝑠∗ − 𝑠) = 𝜆(𝑠∗) − 𝜆(𝑠), therefore the difference is simply11

transformed by 𝜆, and the constant termof an affine operation just disappears; bit-permutations12

of the state just reorder the bits of the differences in the same way.13

In other words, only the non-linear components affect the differences, and the power of dif-14

ferential cryptanalysis is that it can study how these evolve. Hence, in the computation of the15

transition probabilitiy of 𝜌𝑖, only the non-linear components play a role, and the probability is16

obtained considering the values of 𝜌𝑖 over all possible round key choices.17

Also, note that if the function 𝜌𝑖 is small, the value18

𝑝𝑖 = 𝑃𝜌𝑖
(𝛿𝑖, 𝛿𝑖+1) ∶= 𝒫 [𝜌𝑖(𝑥 + 𝛿𝑖) − 𝜌𝑖(𝑥) = 𝛿𝑖+1]

can be computed and tabulated explicitly. In other cases it can be computed as requested. For19

instance, if the round function is of type 𝜆 ∘ 𝛾 ∘ 𝜎[𝑘𝑖] where 𝜎[𝑘𝑖] is the addition of round key20

𝑘𝑖, and 𝜆, 𝛾 are linear and non-linear (cf. Section 1.4 on page 34). Then, 𝜎 is ininfluential for the21

computation of differences and 𝜆 can often be easily traversed. Suppose now that 𝛾 is a brick-22

layer construction from small S-boxes: then both input and output differences can be truncated23

to just the relevant bits and the transition probabilities through each S-box is first fetched, then24

the values are multiplied together to obtain the transition probability for the whole round.25

The first long characteristics were iterative, i.e. they were a repetition of a single differential of26

form 𝛼 𝛼 [BS92], where 𝛼 is a fixed difference of states of the cipher. This approach fails for27

modern primitives due to better diffusion properties.28

Some remarks:29

• Christian Rechberger [Rec09] provides a list of techniques used for the characteristic search,30

whose applicability strongly depends on the particular design.31

• Differential cryptanalysis does not apply only to differences definedwith the XOR operation.32
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The difference can be defined also as the subtraction of integers – useful for cases where the1

native operation in the cipher, especially for keymixing, is addition – or as divisionmodulo a2

prime – useful in ciphers where the native operation in the cipher is multiplication modulo3

a prime, such as in IDEA (Section 3.6 on page 144). Sometimes tables of conversions of4

differences may be useful in case the S-box transforms one operation into another, such as5

logarithm or exponentiation S-boxes, as in SAFER (Section 3.8 on page 150). For the AES,6

the state is split into 8-bit words or bundles which are interpreted as elements of 𝔽28 : this7

is compatible with bitwise XOR and at the basis of the square attack, that can be sees as a8

form of differential cryptanalysis.9

• Differential cryptanalysis is a very versatile attack, and even though it was designed for10

iterated block ciphers it has many applications to stream ciphers and hash functions. Fur-11

thermore, there are several powerful generalizations and extensions of this technique. We12

shall desribe the most significant ones starting with Subsection 2.1.4 on page 82.13

2.1.1.3 1R Attacks and Beyond14

Once we have a differential over, say, 𝑠 rounds, we may want to use it to break at least 𝑠 + 115

rounds of the cipher. Suppose, then, that we have a differential characteristic over 𝑠 rounds16

𝛥 ∶= 𝛿1 𝛿2 𝛿3 𝛿𝑠−1 𝛿𝑠 𝛿𝑡+1 =∶ ∇
𝑝1 𝑝2 𝑝𝑠−1 𝑝𝑠

where the transition probability from 𝛿𝑖 to 𝛿𝑖+1 is 𝑖 and 𝑝 = ∏𝑠
𝑖=1 𝑝𝑖. Now we describe how to17

use the characteristic to attack 𝑟 = 𝑠 + 1 rounds of the cipher:18

1. We use the encryption oracle to compute the encryption of pairs of plaintexts 𝑃, 𝑃∗ with19

𝑃∗ = 𝑃 + 𝛥, obtaining two ciphertexts 𝐶 and 𝐶∗. The hope is that the encryptions, reduced20

by one round, will satisfy the expected characteristics, i.e. that 𝑃∗
𝑟 − 𝑃∗

𝑟 = ∇.21

2. In order to verify this, we decrypt through the last round – usually going through some of22

the S-boxes – using all possible values of the round key 𝑘𝑟 that affect the traversed S-Boxes.23

If the difference between these partial decryptions agrees with the expected value 𝛿𝑟, then24

we have a possible round key candidate.25

(Alternatively, we can turn the requirement that the difference be 𝛿𝑟 into a system of equa-26

tions to be solved in the round key bits. See [AC09] and [WSMP11].)27

Optionally, we can further filter the candidate round keys by analysing the input and output28

differences of the second-to-last round exactly as we did in 0R attacks with the last round29

(for this we must use the difference 𝛿𝑟−1 as well). We obtain candidates for some of the key30

bits and at least one of these must agree with the currently guessed round key.31

For each value of the round key 𝑘𝑟 we have a counter, initially set to zero, and each time a32

value passes the tests we have just described, we increase the corresponding counter.33

During this stage we will obtain some false positives from wrong pairs, but, as in the 0R34

case, if the probability of the characteristic is high enough, their impact will be negligible.35

3. After enough plaintext pairs have been processed, we can test the candidate round keys36

with outstanding counters. If some bits of the master key are still undetermined, these are37

recovered by brute force.38

77



CHAPTER 2. CRYPTANALYSIS

The advantage of 1R attacks with respect to 0R attacks is that we can use shorter characteristics1

with higher probabilities to attack the same number of rounds, although the identification of2

the right pairs is somewhat worse.3

Depending on the structure of the cipher, it may be possible to extend attacks by more than4

one round. In the case of the DES, 2R and 3R round attacks are possible, because differences5

involving only one S-box in the last round can be traced back through a limited number of S-6

boxes for up to 3 rounds, and therefore the number of key bits to be guessed until we reach the7

last round of the differential characteristic is still significantly smaller than the full key space.8

2.1.2 Markov Ciphers and the Wrong-Key Randomisation Hypothesis9

Traditionally, in 1R, 2R, etc. attacks on a 𝑟 rounds cipher, the attacker takes the encryption or-10

acle for the target 𝑟 rounds of the cipher and (partially) decrypts the last 𝑟 − 𝑠 rounds with11

all possible (partial) round keys. A counter is increased for the current round key(s) guess if12

the computed difference fits the expected output difference of the first 𝑠 rounds. Afterwards,13

these keys are ranked according to their counters, that is, the attacker first tries the key with14

the highest counter, then the one with the second highest counter, etc.15

If the guesses for the round keys of the last 𝑟 − 𝑠 rounds are correct, and sufficiently many16

plaintexts are collected, then we expect that the expected output difference will occur more17

often than other differences. On the other hand, the cryptanalyst’s hope is that wrong key18

guesses will not contribute to just one or a few of the counters, creating a bias, but will be19

randomly distributed. There will be some noise, but the right guess will most likely correspond20

to one of the highest counters. Indeed, in [LMM91] it is stated that for a wrong key guess the21

corresponding counter is distributed as for a random permutation, i.e. uniformly – this means22

that for an incorrect key candidate the probability of observing the differential is 1/(2𝑛 − 1),23

where 𝑛 is the block size. InDBLP:journals/jmc/DaemenR07 JoanDaemen andVincent Rijmen24

show that a more correct description of the probability distribution is a binomial distribution25

with parameter 1/(2𝑛 − 1). In both cases, the probability of observing the differential is much26

lower than the probability of the characteristic: this is called the Wrong-Key Randomisation27

Hypothesis (WKRH) in the literature.28

Let us now formalise this intuition.29

An iterated cipher 𝐸 is the composition of equal round functions 𝜌 which are simply parametr-30

ised by the round keys 𝑘𝑖 = 𝜓𝑖(𝐾), i.e. with respect to notation (2.1) we have 𝜌𝑟 = 𝜌[𝑘𝑟]:31

𝐸[𝐾] = 𝜌[𝑘𝑟] ∘ ⋯ ∘ 𝜌[𝑘2] ∘ 𝜌[𝑘1] .

Let now 𝑠 < 𝑟, and32

𝐸𝑠[𝐾] ∶= 𝜌[𝑘𝑠] ∘ 𝜌[𝑘𝑠−1] ∘ ⋯ ∘ 𝜌[𝑘1]

be the cipher 𝐸 reduced to 𝑠 rounds. Further, let33

𝑇𝑠[𝐾] ∶= 𝜌[𝑘𝑟] ∘ … ∘ 𝜌[𝑘𝑠+1]

denote the composition of the last 𝑟 − 𝑠 rounds, so that 𝐸 = 𝑇𝑠 ∘ 𝐸𝑠 (the letter of 𝑇 is chosen34

being the initial of “tail”).35
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The cryptanalyst considers the probabilities1

𝑃𝐸𝑠
(𝛥,∇) ∶= 𝒫 [𝐸𝑠(𝑥 + 𝛥) − 𝐸𝑠(𝑥) = ∇]

and she is interested in input/output difference pairs (𝛥,∇) with large 𝑃𝐸𝑠[𝐾](𝛥,∇). The context2

is that of a key recovery attack, where the attacker starts by collecting 𝑁 (unordered) plain-3

text/ciphertext pairs encrypted with a fixed, unknown key 𝐾. If the number of pairs following4

the given differential, i.e. the respective counter, is denoted by5

𝐷(𝑁)
𝐸𝑠[𝐾](𝛥,∇) , (2.2)

then its expected value is 𝐷(𝑁)
𝐸𝑠[𝐾](𝛥,∇) = 𝑁𝑃𝐸𝑠[𝐾](𝛥,∇). However, since we do not know 𝐾, we6

cannot consider 𝑃𝐸𝑠[𝐾](𝛥,∇) directly: This hurdle is addressed by the concept of Markov cipher7

and by the hypothesis of stochastic equivalence.8

The cipher 𝐸 is said to be Markov if, for all choices of 𝑥, 𝛥 ≠ 0 and ∇ ≠ 0, the probability9

𝒫 [�𝜌[𝑘](𝑥 + 𝛥) − 𝜌[𝑘](𝑥) = ∇] �

depends only on 𝛥 and ∇, and does not depend on 𝑥, when the subkey 𝑘 is uniformly random.10

If an iterated cipher is Markov and its round keys are independent, then the sequence of differ-11

ences at each round output forms a Markov chain, i.e. the transition probabilities in one round12

are independent from those in the other rounds. Thus, we can omit the key in some notations,13

for instance we can write 𝑃𝜌(𝛿𝑖, 𝛿𝑖+1) or even 𝑃(𝛿𝑖, 𝛿𝑖+1) in place of 𝑃𝜌[𝑘](𝛿𝑖, 𝛿𝑖+1).14

If we consider all trails for 𝐸𝑠 of the form 𝛥 = 𝛿1 𝛿2 … 𝛿𝑠 𝛿𝑠+1 = ∇ starting with 𝛥15

and ending with ∇, we can compute16

�̃�𝐸𝑠
(𝛥,∇) ∶= 1

#𝐾 𝑃𝐸𝑠[𝐾](𝛥,∇) = ∑
𝛿2,𝛿3,…,𝛿𝑠

𝑃𝜌(𝛥, 𝛿2) 𝑃𝜌(𝛿2, 𝛿3) ⋯ 𝑃𝜌(𝛿𝑠,∇)

without having to know the actual intermediate values, but only considering the differences.17

Note that in differential cryptanalysis cryptanalists are often satisfied when they can find 𝛥 ≠ 018

and ∇ ≠ 0 such that for a single trail they can compute a lower bound for �̃�𝐸𝑠
(𝛥,∇) that is19

sufficiently large enough than 2−𝑛.20

The hypothesis of stochastic equivalence (see [LMM91]) states that for almost all keys we expect21

𝑃𝐸𝑠[𝐾](𝛥,∇) ≈ �̃�𝐸𝑠
(𝛥,∇) which implies that 𝐷(𝑁)(𝛥,∇) ≈ 𝑁�̃�𝐸𝑠

(𝛥,∇) for almost all keys. This ap-22

proximation has to be understood as expected value taken over all expanded keys (as opposed to23

“over the expansions of all master keys”). In other words the hypothesis assumes independent24

round keys, which is often very far from reality - still, it is an often reliable model.25

Now, suppose an attacker has found a good characteristic for the first 𝑠 rounds, has access to26

an encryption oracle 𝐸 = 𝐸𝑟 for the first 𝑟 rounds with 𝑟 > 𝑠, that can only be taken as a whole,27

and knows the specification of the cipher, so she can implement it with chosen keys.28

The attacker will guess round keys 𝑘∗
𝑠+1, 𝑘∗

𝑠+2, … , 𝑘∗
𝑟 , for the last 𝑠 − 𝑟 rounds. Let us write 𝑘∗ for29

the vector formed by them, and define30

𝑇𝑠[𝑘∗] ∶= 𝜌[𝑘∗
𝑟 ] ∘ … ∘ 𝜌[𝑘∗

𝑠+1] . (2.3)
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The attacker is computing a function1

𝑇−1
𝑠 [𝑘∗] ∘ 𝐸[𝐾] = 𝑇−1

𝑠 [𝑘∗] ∘ 𝑇𝑠[𝐾] ∘ 𝐸𝑠[𝐾] = (𝑇−1
𝑠 [𝑘∗] ∘ 𝑇𝑠[𝐾]) ∘ 𝐸𝑠[𝐾] (2.4)

composed of the encryption oracle and of a function she has defined.2

If the round keys for the last 𝑠 − 𝑟 rounds are correctly guessed and enough samples are taken,3

then the expected output difference will stand out, because in this case 𝑇−1
𝑠 [𝑘∗] ∘ 𝐸[𝐾] = 𝐸𝑠[𝐾].4

The WKRH describes instead what happens when the wrong round keys are guessed for the5

last 𝑟 − 𝑠 rounds. It at least some 𝜓𝑗(𝐾) ≠ 𝑘∗
𝑗 for 𝑠 < 𝑗 ⩽ 𝑟, we have that 𝑇−1

𝑠 [𝑘∗] ∘ 𝐸[𝐾] is a6

different function from𝐸𝑠[𝐾], because𝑇−1
𝑠 [𝑘∗] and𝑇𝑠[𝐾]donot cancel each other. According to7

theWKRH the values of the output differences of the function defined in Equation (2.4) behave8

effectively like random values, i.e. the function is for the cryptanalyst (nearly) indistinguishable9

from a random function. The consequence is that the output difference ∇will not stand out, and10

in fact theWKRHstates that all output differenceswill occurwith (roughly) the same likelihood.11

This is, essentially, the original attack by Eli Biham.12

The WKRH will be generalised in Subsection 2.1.9 on page 88.13

2.1.2.1 Remarks on the Wrong-Key Randomisation Hypothesis14

1. The validity of the Wrong-Key Randomisation Hypothesis is proven under the assumption15

that the round keys are independent from each other, which is almost never the case in16

concrete designs. When the likelihood of the considered characteristic is large enough, this17

is often non relevant, but in border cases deviations from uniform behaviour may impact18

the heuristic evaluations of attack complexity.19

2. The function considered in (2.6) is the composition of the (truncated) encryption function20

𝐸𝑠 with a function21

𝜉 ∶= 𝜉𝑠[𝐾, 𝑘∗] ∶= 𝑇−1
𝑠 [𝑘∗] ∘ 𝑇𝑠[𝐾] (2.5)

which in turn is the composition of a parametrised function with its inverse, where the pa-22

rameters 𝐾 and 𝑘∗ are independent.23

Assuming that 𝜉 ∘ 𝐸𝑠 behaves like a random function, for a function 𝐸𝑠 that is “understood”24

(i.e. some statistical properties are known) is not completely equivalent to assuming that 𝜉25

is a random function, but often close enough.26

If the parameters 𝐾 and 𝐾∗ are sufficiently close to each other it can be debated whether27

𝜉 indeed behaves like a random function (or even as a good “randomisation function” for28

the known statistical properties of 𝐸𝑠). In other words, if the distance between 𝐾 and 𝐾∗29

is sufficiently small (with respect to the fundamental key mixing operation of the cipher),30

there is no guarantee that the quantities 𝑥 and 𝑥′ where31

𝑥′ ∶= 𝜉𝑠[𝐾, 𝑘∗](𝑥)

are not correlated to each other. This may skew the distribution of the counters, which will32

no longer look like a homogeneous distribution, but may retain some of the characteritics33

expected when the right key is guessed. In particular, 𝜉 may map the expected output dif-34

ference with high probability to a different one, which could also stand out. If such a new35

output difference for the wrong key guess is found then some assumptions on the relation36
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between the guessed round keys and the correct ones may be done.1

In fact, it is easy to envision a situation where this scenario is realised: 𝑠 = 𝑟 + 1, i.e. we2

are guessing just the last round; and the function 𝜌 is simple, such as an S-box layer and a3

limited diffusion layer.4

This observation implies that:5

• A proper diffusion layer is necessary to achieve good security and make less rounds ex-6

ploitable in first instance;7

• Wehave the apparent paradox that a poor diffusion layerwill create several false positives8

that may actually slow down the attacker...9

• ... unless the attacker learns how to use false positives to further narrow down the round10

key guesses!11

3. Regarding the WKRH, in [BGN12a], Céline Blondeau, Benoît Gérard and Kaisa Nyberg12

claim “Assuming that this hypothesis does not hold would mean that 𝑟 + 1 rounds of the cipher13

are distinguishable and hence the attacker should be able to attack more rounds. As a consequence,14

this hypothesis is quite reasonable as soon as the attacker targets the largest number of rounds he is15

able to attack (which is typically the case).”16

This remark is questionable since we are composing a cipher with the inverse of one rounds,17

which is a different function than one normal additional round – as we just observed in the18

previous paragraph – unless the cipher has an involutory structure. A near-guess for the19

round key may just confuse the analysis, because the added inverse round may indeed par-20

tially invert the last round of the oracle – and it is not yet clear how the analyst may be use21

these near matches to narrow the search for the correct round key.22

4. A statistical model that takes into account per-wrong key biases is described by Andrey Bog-23

danov and Elmar Tischhauser in [BT13]. In [MC13a] James McLaughlin and John A. Clark24

show a concrete instance where this assumption does not hold. These results are applied to25

linear cryptanalysis, but the existence of biases may affect differential cryptanalysis as well.26

2.1.3 Multiple Differentials27

In the original presentation of differential cryptanalysis [BS90], a single differential is exploited,28

whereas in [BS91a] the use of several differentials having the same output difference is consid-29

ered as well. For instance, onemay be able to find several differential trails with the same initial30
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and final differences, such as1

𝛿(1)
2 𝛿(1)

3 𝛿(1)
𝑠−1 𝛿(1)

𝑠

𝛿(2)
2 𝛿(2)

3 𝛿(2)
𝑠−1 𝛿(2)

𝑠

⋮ ⋮ ⋮ ⋮

𝛥 ∶= 𝛿1 𝛿(𝑗)
2 𝛿(𝑗)

3 𝛿(𝑗)
𝑠−1 𝛿(𝑗)

𝑠 𝛿𝑠+1 =∶ ∇

⋮ ⋮ ⋮ ⋮

𝛿(𝑑)
2 𝛿(𝑑)

3 𝛿(𝑑)
𝑠−1 𝛿(𝑑)

𝑠

𝑝(1)
1

𝑝(2)
1

𝑝(𝑗)
1

𝑝(𝑑)
1

𝑝(1)
2 𝑝(1)

𝑠−1

𝑝(2)
2 𝑝(2)

𝑠−1

𝑝(𝑗)
2 𝑝(𝑗)

𝑠−1

𝑝(𝑑)
2 𝑝(𝑑)

𝑠−1

𝑝(1)
𝑠

𝑝(2)
𝑠

𝑝(𝑗)
𝑠

𝑝(𝑑)
𝑠

where not only ∏𝑠
𝑖=1 𝑝(𝑗)

𝑖 ≫ 2−𝑛 holds for all probabilities (1 ⩽ 𝑗 ⩽ 𝑑), but they are of similar2

magnitude, otherwise the trailswith smallest probabilitieswould give a negligible contribution.3

This means that in 1R-type attacks, it can be verified, for each plaintext/ciphertext pair, which4

of the admissible differences actually gives non-empty sets of key candidates, and for these the5

counters are then updated.6

Wrong guesses arising from the wrong trails (even for a right pair) will contribute to the wrong7

counters. However, by an argument similar to the wrong key randomisation hypothesis, their8

contributes will be essentially random. Therefore this approach should increase the effective-9

ness of differential cryptanalysis.10

In [BG11b, BG11a] Céline Blondeau and Benoît Gérard study the use of multiple differentials11

and apply their analysis to construct attacks on 18 rounds reduced PRESENT, currently the12

best differential cryptanalysis of that cipher that does not make use of algebraic methods (see13

Section 3.29 on page 206).14

2.1.4 Truncated Differentials15

An important improvement – alreadymentioned in [BS91a] – is to ignore part of the state when16

considering the differentials, in other words not all the bits of the differentials are fixed. Lars17

Knudsen called these types of differentials truncated differentials [Knu94], where only a part of18

the difference in the ciphertexts (after a possibly reduced number of rounds) can be predicted.19

He used them to analyze various ciphers, such as SAFER [KB96] (Section 3.8 on page 150), and20

Skipjack [KRW99] (Section 3.14 on page 166).21

An important type of truncated differential is the word-wise truncated differential, where the22

difference itself is not considered, but instead the differences are divided into two classes, for23

instance zero differences and nonzero differences. In these cases the data blocks are divided24

intowords (for instance nibbles, bytes, or 16-bit words), and the analysis only considers whether25

the difference of a word is expected to be zero or not.26
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2.1.5 Higher-order Differential Cryptanalysis1

Higher-order differential cryptanalysis, as defined by Xuejia Lai [Lai94] is a generalisation of2

differential cryptanalysis where higher order differences are considered in place of simple dif-3

ferences. (See also [Knu94].) Higher-order differentials are defined in an analogous way to4

higher order derivatives.5

Let 𝑓 ∶ 𝑆 𝑇 be a cipher, where an addition operation is defined on 𝑆 and 𝑇 (this is usually the6

XOR, but it does not hurt to consider a more general setting). Recall that the differential of 𝑓 at7

the point 𝑎 ∈ 𝑆 is defined as8

𝛥𝑎 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑎) − 𝑓 (𝑥) .

The 𝑖-th differential of 𝑓 at the points 𝑎𝑙, … , 𝑎𝑖 is defined as9

𝛥(𝑖)
𝑎1,…,𝑎𝑖 𝑓 (𝑥) = 𝛥𝑎𝑖(�𝛥(𝑖−1)

𝑎1,…,𝑎𝑖−1 𝑓 (𝑥))� .

Applying this definition recursively, we obtain10

𝛥(𝑖)
𝑎1,…,𝑎𝑖 𝑓 (𝑥) = (−1)𝑖 ∑

∅⊆𝐼⊆[1..𝑖]
(−1)#𝐼 𝑓 (𝑥 + 𝑎𝐼) where 𝑎𝐼 = ∑

𝑖∈𝐼
𝑎𝑖 .

If we are considering functions between vector spaces 𝑆 and 𝑇 over 𝔽2), then it is easy to see that11

the points 𝑎𝑙, … , 𝑎𝑖 must be linearly independent for the 𝑖-th differential to be non-zero. Denote12

the linear space generated by the points 𝑎𝑙, … , 𝑎𝑖, by ⟨𝑎𝑙, … , 𝑎𝑖⟩, then13

𝛥(𝑖)
𝑎1,…,𝑎𝑖 𝑓 (𝑥) = ∑

𝛼∈⟨𝑎1,…,𝑎𝑖⟩
𝑓 (𝑥 + 𝛼) .

The important observation is that any derivation decreases the degree of the function. So, for14

any function 𝑓 ∶ 𝔽 𝑛
2 𝔽 𝑚

2 the 𝑛-th derivative is constant, and if the function is invertible, the15

(𝑛 − 1)-th derivative is already constant.16

But, a constant derivative is a constant differential, and if this can be found, it can be used exactly17

as a classic differential with probability 1 – and a lower degree differential will likely exhibit18

strong biases. As with first order differential cryptanalysis, successful search for higher order19

differentials with a significant bias will lead to relations involving the key (and ignoring low20

degree ciphertext dependent components), and thus speed up the search for key candidates.21

So far, the direct application of higher-order differential cryptanalysis in the form just explained22

to block ciphers have let to very limited results.23

On the other hand following developments need to be mentioned:24

1. Integral attacks (square attack) are higher-order differential attack with truncated differen-25

tials (Subsubsection 2.1.5.1 on the following page).26

2. Cube attacks, at least in the boolean function case, are clearly a form of higher order differ-27

ential attack (Subsubsection 2.1.5.2 on the next page).28

3. At the core of the boomerang attack (Subsection 2.1.6 on page 85) there is, essentially, a29

construction of second order differentials, but, technically, the boomerang attack is not a30

second order differential attack.31
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4. Hidema Tanaka, Kazuyuki Hisamatsu, and Toshinobu Kaneka [THK99] break five rounds1

ofMISTY1with the “FL” function omitted (see Subsection 3.18.8 on page 176) usingmultiple2

seventh order differentials.3

Related to this, another recent exception is a 32nd order differential analysis of eight rounds4

of MISTY-2 without FL functions [IKE+13] (see Subsection 3.18.8 on page 176).5

2.1.5.1 Integral Cryptanalysis (Saturation Attacks, Multiset attacks)6

Integral cryptanalysis [KW02] was initially presented as a dual to differential cryptanalysis and7

it is the best known attack on AES (Section 3.20 on page 182).8

Variants of this attack appeared earlier in the literature, under the names square attack [DKR97]9

and saturation attacks [Luc00]. These attacks are sometimes grouped under the name Multiset10

attacks.11

In these attacks the attacker looks at a large, carefully chosen set of encryptions, in which parts12

of the inputs are the same, and other parts cycle through several, or even all, possibilities: For13

instance, the input may have all bytes equal to each other except for the least significant one,14

where all 256 possible values are taken.15

Then, the outputs are combined, often just added together (whence the name integral as op-16

posed to differential), and probabilities for particular values of this combination – possibly17

truncated – are considered.18

For instance, suppose that all the possible values in a given plaintext byte are considered, the19

rest of the plaintext beingfixed, and that the corresponding ciphertexts (possibly after a reduced20

number of rounds) are added together. This is clearly just a eighth order differential. If just a21

few bits of the ciphertext are considered in the estimation of the likelihood of the differential,22

will have a eighth truncated order differential. This is precisely the type of attack called square23

attack (because it was used to break SQUARE Section 3.11 on page 160)24

Such attacks are among themost effective ones for reduced roundRijndael, due to the byte-wise25

structure of the cipher.26

2.1.5.2 AIDA/Cube Attack27

A cube attack is a cryptanalytic method used in order to retrieve secret values from a tweakable28

polynomial, i.e. a polynomial depending both on secret and public variables – typically the rep-29

resentation of a cryptographic algorithm where the public variables can be either initialisation30

vectors or known/chosen plaintexts. The attack is usually a key-recovery attack.31

The attack was first presented by Michael Vielhaber as AIDA [Vie07] where it was applied to a32

simplified version of the stream cipher Trivium. A very similar attack was then presented by33

Itai Dinur and Adi Shamir [DS08b, Jou09] and then used by the same authors together with34

Jean-Philippe Aumasson and Willi Meier against reduced versions of Trivium and the hash35

function MD6 [ADMS09].36

In the Boolean case, which is by far the most important case, the cryptanalyst computes higher37

order derivatives of the polynomial. This precomputation uses sums of values of the polyno-38

mial on subspaces of public variables - the so-called cube, that is in fact a hypercube, or the39

linear span of the set of base points for the computation of the higher order of the differential40
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- to obtain a system of linear equations in the secret variables which can be solved using usual1

methods.2

Cube attacks can be used together with other techniques, in particular when these can provide3

extra information on the secret bits, such as side channel attacks [DS09] or partially successful4

algebraic attacks.5

For instance, Gregory Bard et al. [BCN+10] apply these attacks to the KATAN family of block6

ciphers (see Section 3.31 on page 209). They can break 60 rounds of KATAN-32 in time 239, 507

rounds of KATAN-48 in time 249, and 40 rounds of KATAN-64 in time 235 using the cube attack8

alone. But, using a single bit of leaked state, all 254 rounds of KATAN-32 can be broken.9

Usually a cube attack consists of two phases, an offline phase and an online phase:10

1. Offline phase (precomputation)11

(a) Search for public variables (IV, plaintext) whose (higher order) derivative is a linear com-12

bination of key bits.13

(b) The linearity is detected via probabilistic testing.14

(c) Then, the corresponding equations are reconstructed bit-per-bit.15

2. Online phase16

(a) Evaluate each linear equation detected during precomputation varying the public bits.17

(b) Solve the linear system obtained.18

2.1.6 Boomerang Attacks19

David Wagner published the boomerang attack in 1999 [Wag99] and used it to break the CO-20

CONUT98 cipher. It is an adaptive chosen plaintext and ciphertext attack that makes a clever21

use of a second-order differential.22

The attack considers the cipher 𝐸 as the cascade of two subciphers, i.e. 𝐸 = 𝐸2 ∘ 𝐸1 (the decryp-23

tion function is 𝐷 and splits as 𝐷 = 𝐷1 ∘ 𝐷2). Then, two differentials are necessary:24

• A good differential, say with input differential 𝛥 and output differential 𝛥∗, for the encryp-25

tion operation of 𝐸1; and26

• A good differential for the decryption operation of 𝐸2, i.e. 𝐷2.27

Thus, the two differentials “meet” in themiddle of the cipher 𝐸 and together cover it completely.28

The attack, in its simplest form, proceeds as follows:29

1. Choose a random plaintext 𝑃 and calculate 𝑃∗ = 𝑃 + 𝛥.30

2. Request the encryptions 𝐶 = 𝐸(𝑃) and 𝐶∗ = 𝐸(𝑃∗) of 𝑃 and 𝑃∗.31

3. Calculate ̂𝐶 = 𝐶 + ∇ and ̂𝐶∗ = 𝐶∗ + ∇.32
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Figure 2.2: Construction of a Boomerang

�̂� �̂�∗

𝑃 𝐷1 𝑃∗ 𝐷1

𝐸1 𝐸1

𝐷2 𝐷2

𝐸2 ̂𝐶 𝐸2 ̂𝐶∗

𝐶 𝐶∗

𝑆

̂𝑆

𝑆∗

̂𝑆∗

𝛥 ?

𝛥

𝛥∗

𝛥∗

∇∗ ∇∗

∇ ∇

4. Decrypt ̂𝐶 and ̂𝐶∗, i.e. compute �̂� = 𝐷( ̂𝐶) and �̂�∗ = 𝐷( ̂𝐶∗).1

5. Verify if �̂�∗ = �̂� + 𝛥, i.e. whether the differentials hold or not.2

The four ciphertexts 𝑃, 𝑃∗, �̂�, �̂�∗ are called a quartet. If the two differentials have probabilities 𝑝3

and 𝑞 respectively, the probability of a quartet is 𝑝2𝑞2. When a quartet is found, the situation is4

depicted in Figure 2.2, where the sought differentials for 𝐸1 and 𝐷2 are shown. At this point, a5

differential cryptanalysis attack can be mounted on the cipher.6

Note that this is a order 2 differential of type 0 0. Indeed:7

0 = 𝛥 − 𝛥 = (�̂�∗ − �̂�) − (𝑃∗ − 𝑃) ( ̂𝐶∗ − ̂𝐶) − (𝐶∗ − 𝐶) = ( ̂𝐶∗ − 𝐶∗) − ( ̂𝐶 − 𝐶) = ∇ − ∇ = 0

but note that higher order differentials of type 0 0 need not be trivial for order higher than 1. This is8

a fundamental difference with respect to classical differential cryptanalysis.9

Refinements on the boomerang attack have been published:10

• The amplified boomerang attack [KKS00] is a known plaintext attack as opposed to adaptive.11

The attacks relies on the following idea: Encrypt many plaintext pairs, and hope that some12

quartet satisfy the conditions of the boomerang attack. The probability of a quartet to be-13

come a right quartet is 2−𝑛−1𝑝2𝑞2 where 𝑛 is the block size, hence itmay seems that the attack14

is doomed to be considerably slower. However, the technique works well when many quar-15

tets are chosen by the birthday paradox. Also, it profits from the fact that it exploits several16

(unknown) differentials at the same time, so the number of possible XOR differences that17

can be found increases considerably. This principle is called the boomerang amplifier.18

• The rectangle attack [BDK01b, BDK01c], that aims at improving the probabilities of the am-19

plified boomerang attack by using multiple differentials in each sub-cipher.20
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The boomerang attack and its refinements have allowed new avenues of attack formany ciphers1

previously deemed safe from differential cryptanalysis, for instance reduced round SAFER++2

(Section 3.8 on page 150), SQUARE (Section 3.11 on page 160), reduced round MARS (Sec-3

tion 3.16 on page 169), full round SHACAL-1 (Subsection 3.21.1 on page 189) under a related-4

key assumption, reduced round Camellia (Section 3.18 on page 172), and many more.5

2.1.7 Impossible Differentials6

Impossible differential cryptanalysis was introduced by Johan Borst, Lars Knudsen, and Vin-7

cent Rijmen in [BKR97]. One of the first notable uses of this attack was in Lars Knudsen’s 19988

report [Knu98] where he introduced his AES candidate, DEAL (Subsection 3.19.1 on page 179).9

There, he also observed that Feistel ciphers with bijective round functions have 5-round impos-10

sible differentials (however, Knudsen did not use the terminology “impossible differentials”).11

The attack relies on finding an impossible (or extremely unlikely) event through a reduced part12

of a block cipher – an event that never happens if the key is wrongly guessed. The nature of13

this event is that of a differential, i.e. it is usually the condition on the output difference of a14

certain number of rounds given a certain input difference. Then, secret key bits are guessed, and15

those that lead to this impossible event are discarded. An important difference with respect to16

classic differential cryptanalysis is that whereas in classic differential cryptanalysis the involved17

key bits are explicitly computed or restricted, in impossible differential cryptanalysis they are18

determined by exclusion. This attack is faster than brute force whenever only some specific key19

bits must be correctly guessed in order to verify the occurrence of the event and the remaining20

key bits are irrelevant. The attack is then completed by a brute force search on the remaining21

bits or by using other impossible differentials.22

Thename “impossible differential”was introduced byEli Biham,Alex Biryukov andAdi Shamir23

at the CRYPTO ’98 rump session, when they presented their attack on 31 out of 32 rounds of24

Skipjack and 4.5 out of 8.5 rounds of IDEA. The papers appeared the following year [BBS99a,25

BBS99b]. The journal version of [BBS99a] appeared in 2005 [BBS05]. The paper [BBS99b] de-26

scribes a relatively efficient specialized method for finding impossible differentials called a27

miss-in-the-middle attack, which consists of finding “two events with probability one, whose28

conditions cannot be met together.”29

The technique has since been applied to many other ciphers, such as: Khufu and Khafre, E2,30

variants of Serpent, MARS, Twofish, KASUMI, Rijndael, CRYPTON, mCrypton, HIGHT, Zo-31

diac, Hierocrypt-3, TEA, XTEA, Mini-AES, ARIA, Camellia, CLEFIA, and SHACAL-2.32

2.1.8 Improbable Differentials33

Improbable differential cryptanalysis introduced in [Tez10a, Tez10b] to analyze CLEFIA (Sec-34

tion 3.28 on page 203) uses a differential that is less probable when the correct key is used, but35

it is not an impossible differential. This differential then acts as a distinguisher, and repeated36

sampling with variable random plaintexts is used to determine whether the correct key (part)37

was guessed. The validity of the improbable differential cryptanalysis has been recently chal-38

lenged [Blo13].39
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2.1.9 Unified Approaches to Differential Cryptanalysis1

The fundamental observation is that if the round keys for the last 𝑟 − 𝑠 rounds are correctly2

guessed, then (in the notation of Subsection 2.1.2 on page 78) the function𝑇−1
𝑠 [𝑘∗]∘𝐸[𝐾] is equal3

to the 𝑠-round function 𝐸𝑠[𝐾] with a predictable behaviour, whereas if the round keys guesses4

are wrong, then 𝑇−1
𝑠 [𝑘∗] ∘ 𝐸[𝐾] will be a 𝑟-round function whose characteristics are expected5

to be much closed to those of a random function than 𝐸𝑠[𝐾]. This in fact applies to all forms6

of differential cryptanalysis, which then consist in applying a distinguisher to 𝑇−1
𝑠 [𝑘∗] ∘ 𝐸[𝐾]7

to establish whether we have the “known” function or a different one. In simple differential8

cryptanalysis the distinguisher consists in verifying an outstanding characteristic, in impossible9

or improbable differential attacks the distinguisher is a low probability characteristic, in higher-10

order cryptanalysis it is a combination of more than two values, and so on.11

MartinAlbrecht andGregor Leander in [AL12] provide a unified framework for these and other12

types of differential cryptanalysis. In order to do this, for a fixed input difference they analyse13

the vector of the counters for all possible output differences, and compare them to the expected14

counters for the correct and wrong round key guesses. They consider small ciphers because15

these allow to compute statistical distributions more precisely - however their results can be16

applied at least in theory to any Markov cipher.17

For notation we refer to Subsection 2.1.2 on page 78, and we shall extend the arguments clos-18

ing that section in order to provide the generalisation. The first generalisation with respect to19

those arguments is that instead of just picking a frequent counter we can consider very rare20

or vanishing counters (and we obtain improbable and impossible differential cryptanalysis) or21

take counters for whole sets of values (getting multi-set differential cryptanalysis).22

Going further, we can look at the distribution of the values𝐷(𝑁)
𝐸𝑠[𝐾](𝛥,∇) (cf. (2.2)). This was stud-23

ied in [DR07] (see also [DR05]) and [BG10]. It turns out, considering𝐷(𝑁)
𝐸𝑠[𝐾](𝛥,∇) as the results of24

𝑁 independent Bernoulli trials with success probability �̃�𝐸(𝛥,∇) leads to a precise model of the25

actual distribution. More precisely, according to Assumption 1 in [AL12], denoting by ℬ(𝑛, 𝑝)26

the Binomial distribution with 𝑛 tries and success probability 𝑝, a reasonable approximation27

for the distribution of 𝐷(𝑁)
𝐸[𝐾](𝛥,∇) is given by the binomial distribution ℬ(�𝑁, �̃�𝐸𝑠

(𝛥,∇))�:28

𝒫 [�𝐷(𝑁)
𝐸𝑠[𝐾](𝛥,∇) = 𝑐] � = (

𝑁
𝑐 ) (��̃�𝐸𝑠

(𝛥,∇))�𝑐(�1 − �̃�𝐸𝑠
(𝛥,∇))�𝑁−𝑐

where the probability is taken over random keys 𝐾.29

We can then rephrase the Wrong-Key Randomisation Hypotheses in this setting. As in Subsec-30

tion 2.1.2 on page 78, we consider guesses for the round keys 𝑘∗
𝑠+1, 𝑘∗

𝑠+2, … , 𝑘∗
𝑟 of the last 𝑟 − 𝑠31

rounds, write 𝑘∗ for the vector formed by them, and define 𝑇𝑠[𝑘∗] as in (2.3). Then,32

𝐷(𝑁)
𝑇−1𝑠 [𝑘∗]∘𝐸[𝐾](𝛥,∇) ≈ ℬ(𝑁, 2−𝑛) , (2.6)

where 𝑛 is the bit size of the cipher’s state. This definition slightly generalises the definition of33

WKRH as given in [AL12, Assumption 2].34

The power of modelling 𝐷(𝑁)
𝐸𝑠[𝐾](𝛥,∇) as the results of 𝑁 independent Bernoulli trials is that we35

can consider all possible output differences at once, for both the right key guess and the wrong36

key guesses. We compute the distribution for the right key guesses once for all, i.e. we compute37
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the likelihoods of all possible output differentials for a fixed input differential, we also compute1

the distribution in case of a wrong key guess as in Equation (2.6).2

For normal ciphers, it is impossible to compute the likelihoods of all possible output differen-3

tials, but Albrecht and Leander observe that it is possible for small ciphers. For instance, for a4

simple SPN cipher where a round is composed of an S-box layer and of a linear diffusion layer,5

we take 𝐴 as the transformation matrix obtained by composing the block diagonal matrix with6

difference distributionmatrices on themain diagonal and amatrix representing the linear layer.7

Then a probability vector representing the chosen initial difference is multiplied by this matrix8

as many times as the length of the characteristic(s) to be constructed, for instance:9

𝛥 = 0
𝛥 = 1

⋮

𝛥

⋮

𝛥 = 2𝑛 − 2
𝛥 = 2𝑛 − 1

∶

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
⋮
0
1
0
⋮
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝐴

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1/4

⋮
1/8
1/16

0
⋮

1/4
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝐴

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1/16

⋮
7/256
3/32
1/4

⋮
1/16
1/4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝐴

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
3/32

⋮
19/1024
3/128
7/64

⋮
1/128
1/16

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.7)

(This example is taken from Martin Albrecht’s presentation of [AL12] at SAC 2012.)10

The final vector is the probability distribution of the output differences. (That this can be done11

should not be a surprise: we are modelling aMarkov cipher as a Markov process, i.e. according12

to its definition).13

Now, for a given guess 𝑘∗ of the last 𝑟 − 𝑠 round keys, we sample the resulting counters distribu-14

tion, and we denote by15

𝒟 (𝑁)
𝑇−1𝑠 [𝑘∗]∘𝐸[𝐾](𝛥) = [ �𝐷(𝑁)

𝑇−1𝑠 [𝑘∗]∘𝐸(𝛥, 𝑖)]�
𝑖=1,2,…2𝑛−1

the vector of all counters corresponding to all output differences after encrypting 𝑁 plaintext-16

pairs with difference 𝛥. It is here assumed that the corresponding distribution behaves like a17

multinomial distribution where each component is binomially distributed.18

At this point, different techniques can be used to verify towhich distribution the sampled distri-19

bution belongs (we shall return to this later) – and thus to verify whether the round key guesses20

were right or wring.21

Using the whole counters table, not only classical differential cryptanalysis can be subsumed,22

but also impossible, improbable differential cryptanalysis, and considering several values at23

once also multi-set differential cryptanalysis (including integral cryptanalysis). Several input24

differences at once (for instance, for truncated integral cryptanalysis) can be considered by25

choosing an initial vector of weight different than one in (2.7) (the entries must add up to one,26

of course).27

Céline Blondeau, Benoît Gérard and Kaisa Nyberg [BGN12a] use a different approach to ad-28

dress the problem of large counter vectors. A key components in their generalisation are is the29

partition function, i.e. a map 𝜋 from the set of all possible differences to a smaller set of values30
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𝑉, and counters are gathered for each 𝑣 ∈ 𝑉. The counters are then computed as1

𝐷(𝑁)
𝑓 (𝛥, 𝑣) = #{𝑥 ∣ 𝜋(� 𝑓 (𝑥 + 𝛥) − 𝑓 (𝑥))� = 𝑣, for 𝑁 random 𝑥} (2.8)

for both expected counters – i.e. where 𝑓 = 𝐸𝑠[𝐾]) – and for the sampled ones – i.e. where2

𝑓 = 𝑇−1
𝑠 [𝑘∗] ∘ 𝐸[𝐾].3

A simple partition function is 𝜋(𝑥) = 1 if 𝑥 = ∇ and 𝜋(𝑥) = 0 otherwise. By mapping, for in-4

stance, all differences with some fixed bits to a single value, truncated differentials are included5

in the model. Multiple distinct differentials are considered by mapping each differential to a6

different index, i.e. for possible output differences ∇𝑖, 1 ≤ 𝑖 ≤ 𝑚we can define 𝜋(𝑥) = 𝑖 if 𝑥 = ∇𝑖7

and 𝜋(𝑥) = 0 if 𝑥 ∉ {∇1, … , ∇𝑚}.8

This has the advantage that the counters vector9

𝒟 (𝑁)
𝑇−1𝑠 [𝑘∗]∘𝐸[𝐾](𝛥) = [ �𝐷(𝑁)

𝑇−1𝑠 [𝑘∗]∘𝐸(𝛥, 𝑣)]�
𝑣∈𝑉

can be much shorter, and thus it can be computed and stored also for larger ciphers than in the10

Albrecht-Leander generalisation – but at the same time the mapping 𝜋 destroys the original11

information.12

The scoring function essentially maps the observed empirical distribution to scores for the vari-13

ous key candidates, allowing the analyst to try those with a better score first. Scoring functions14

can be based on the LLR, as in the Albrecht-Leander generalisation, or 𝜒2 statistics. Their defi-15

nitions are recalled next.16

Definition of the LLR and 𝜒2 scoring functions. Let 𝜃 = [𝜃𝑣]𝑣∈𝑉 be a uniform distribution17

vector (the vector has to be weighted according to the cardinalities of the preimages of the 𝑣 ∈ 𝑉18

w.r.t. the partition function 𝜋), and let p be the expected probability distribution vector p =19

[𝑝𝑣]𝑣∈𝑉 . Let q be the observed distribution for 𝑁 samples. Then the LLR scoring function is20

defined as21

LLR(q,p, 𝜃) = 𝑁 ∑
𝑣∈𝑉

𝑞𝑣 log (
𝑝𝑣
𝜃𝑣 )

and the 𝜒2 scoring function as22

𝜒2(q, 𝜃) = 𝑁 ∑
𝑣∈𝑉

(𝑞𝑣 − 𝜃𝑣)2

𝜃𝑣
.

Depending on the bias with respect to ideal distributions, according to [BGN12a] a 𝜒2 based23

scoring function proves often better than a LLR based one. Using the LLRmethod the statistics24

can be computed on-the-fly, without having to store all the counters, but this is not possiblewith25

the 𝜒2 method, resulting in an increased memory cost. For both scoring functions, estimated26

for the smallest number of samples that are necessary for a successful determination of the27

distribution type are given and proved in [BGN12a].28

2.1.10 Countermeasures29

We now see how to make a cipher resistant to the various types of differential cryptanalysis.30
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2.1.10.1 Classic Differentials1

revise and complete2

The major method to build resistance against (non-impossible, non-improbable) differential3

cryptanalysis is by bounding the probability of the best characteristic (or differential) to be very4

low.5

This is done by using S-boxes of low differential uniformity, but this is per se not sufficient. It6

is important that each output difference to influence as many S-boxes as possible downstream,7

i.e. they are diffused as quickly and thoroughly as possible – in a bricklayer construction this is8

done by using diffusion layers of higher branch number.9

S-boxes that transform the types of differences, such as SAFER’s logarithm or exponentiation10

S-boxes, as well as mixing different types of operations, such as bitwise XOR, integer addition,11

arithmetic inGalois fields, help not only against linear cryptanalysis but also against differential12

cryptanalysis. The use of different operations for both key mixing and combination with F-13

Function output is fundamental in the design of CAST (Section 3.7 on page 148).14

However, all above considerations donot directly translate into a formal evaluation of resistance.15

Adesigned desires to bound the probability 𝑝 of the best characteristic (or differential) such that16

1/𝑝 is larger than the required complexity, or even larger than the size of the plaintext space (in17

which case even choosing the whole plaintext space is not sufficient for mounting an attack).18

These bounds were formalized into various theories of provable security against differential19

cryptanalysis. Results about designing DES-like ciphers which are resistant against differential20

cryptanalysis exist [NK95].21

A specially interesting theory for provable security against differential cryptanalysis (and also22

linear cryptanalysis) is Serge Vaudenay’s theory of decorrelation, which we described in Sub-23

sectio 1.10.3 on page 64.24

2.1.10.2 Impossible or Improbable Differentials25

Against impossible differential cryptanalysis (and improbable differential cryptanalysis) the26

above approaches will of course not work – in fact they may even facilitate such attacks. In fact,27

we would need lower bounds on the probability of a differential characteristic, and there are28

no good techniques to ensure that.29

Ruilin Li, Bing Sun and Chao Li in [LSL11] give sufficient but not necessary conditions for the30

existence of impossible differentials in SPNs. They remark that the linear transformation should31

be carefully designed in order to protect the cipher against impossible differential cryptanalysis32

– however their suggestions are limited to a check list of conditions to avoid.33

Similarly, Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque and Gaëtan Leurent de-34

scribe in [BDFL11] new generic instances of impossible differentials on various classes of Gen-35

eralized Feistel Networks, and these should be taken into account while designing ciphers.36

2.2 Linear Cryptanalysis37

Linear cryptanalysis uses linear approximations of block ciphers to perform key recovery. It is38

a known-plaintext attack. It is not the first general cryptanalytic technique introduced to break39
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block ciphers – that privilege going to differential cryptanalysis (section 2.1 on page 73).1

MitsuruMatsui and Atsuhiro Yamagishi introduced the technique to break the cipher FEAL in2

1992 [MY92] and Matsui applied it to DES the following year [Mat93]. Similar ideas have been3

published before by Adi Shamir in 1985 [Sha85] and by Anne Tardy-Corfdir and Henri Gilbert4

in 1991 [TCG91].5

2.2.1 Matsui’s Algorithm 16

In its simplest form this cryptanalysis works as follows. Let 𝐴 be a vector of length 𝑡 over 𝔽27

and ℐ be a subset of [0..𝑡 − 1] (𝑡 can be the block size 𝑛 or the key length ℓ). The notation8

⟨𝐴, ℐ ⟩ denotes the sum (parity) of the bits in 𝐴 at the positions indexed by ℐ , i.e. the parity9

bit of the corresponding choice of bits. Let 𝑃, 𝐶 and 𝐾 denote plaintext, ciphertext and key,10

respectively. The aim of linear cryptanalysis is to find sets of indexesℐ𝑃 ⊆ [0..63],ℐ𝐶 ⊆ [0..63],11

and ℐ𝐾 ⊆ [0..55], such that an equation12

⟨𝑃, ℐ𝑃⟩ ⊕ ⟨𝐶, ℐ𝐶⟩ = ⟨𝐾, ℐ𝐾⟩ (2.9)

holdswith probability 1/2+𝜀𝑖 for some 𝜀𝑖 ≠ 0. In fact, since no cipher is ideal, any such equation13

will hold with probability different from 1/2, so the goal is to find equations of type (2.9) that14

hold with probability 𝑝 significantly different from 1/2. For instance, for DES Matsui found15

an approximation that held with probability 1/2 − 2−24. Then, a simple algorithm based on16

maximum likelihood is used to find one parity bit of the key: Suppose we have 𝑁 random17

known plaintexts and 𝑍 is the number of these plaintexts for which the l.h.s. of (2.9) is 0. Then18

if (𝑍 − 𝑁/2) and 𝜀𝑖 have the same sign we conclude that ⟨𝐾, ℐ𝐾⟩ = 0, otherwise ⟨𝐾, ℐ𝐾⟩ = 1.19

Matsui computed that 𝑁 = 𝑂(|𝜀𝑖|−2) plaintexts are necessary to determine the correct parity.20

This procedure is repeated with other linear approximations, obtaining additional key bit pari-21

ties, until the number of unknown bits is low enough that they can be recovered by brute force.22

In order to find linear approximations for the whole cipher one usually starts with linear ap-23

proximations for single rounds, and combines them. Care must be taken to correctly multiply24

the probabilities. To this purpose the Piling-up Lemma is used: Let 𝑋𝑖 for 𝑖 = 1, 2, ..., 𝑛 be inde-25

pendent variables taking values in 0, 1, each with bias 𝜀𝑖 (i.e. the difference of the probability the value is26

0 or 1 from 1/2). Then the bias of the sum 𝑋 = ⊕𝑛
𝑖=1𝑋𝑖 is given by 𝜀 = 2𝑛−1 ∏𝑛

𝑖=1 𝜀𝑖.27

Thus, the approximation for the whole cipher is written as a chain of connected linear approxi-28

mations, each spanning a small part of the cipher. Such a chain is called a linear characteristic.29

Assuming that the biases of these partial approximations are statistically independent and easy30

to compute, the total bias can be computed using the piling-up lemma. In practice, the biases of31

the partial approximations are not completely independent, so the actual bias can be larger or32

smaller. In order to better evaluate attack complexities, Kaisa Nyberg described the linear hull33

effect in [Nyb94]. A complex linear approximation for several rounds can be obtained as the34

product of different chains. Estimates of the likelihood of linear and differential cryptanalysis35

attacks under these expanded considerations can be found in [Sel08].36

2.2.2 Matsui’s Algorithm 237

Matsui further improves his approach in his Algorithm 2 by using a linear approximation for38

𝑟 − 1 rounds to break an 𝑟 round cipher. In the case of DES, a 15 round approximation is used,39
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and in place of (2.9) an equation1

⟨𝑃, ℐ𝑃⟩ ⊕ ⟨𝐶, ℐ𝐶⟩ ⊕ ⟨𝐹(𝐶, 𝑘16), ℐ𝐹⟩ = ⟨𝐾, ℐ𝐾⟩ (2.10)

where 𝐹 is the 𝐹-Function of the cipher, that accepts (half of) the ciphertext 𝐶 and a round key2

as inputs, and it is just 32-bits wide, so that ℐ𝐹 ⊆ [0..31]. Note that, if the sets ℐ𝐹 and ℐ𝐶3

are constructed such that the selected bits of 𝐶 are all XORed with the corresponding bits of4

𝐹(𝐶, 𝑘16), then ⟨𝐶, ℐ𝐶⟩ ⊕ ⟨𝐹(𝐶, 𝑘16), ℐ𝐹⟩ is indeed a linear function of bits of the output of the5

penultimate round.6

For wrong guesses of the round key, under the wrong key randomisation hypothesis the bias will7

be strongly reduced, hence the right round key and the right parity are guessed for the largest8

difference |𝑍 − 𝑁/2|. The wrong key randomisation hypothesis essentially states that when9

analyzing a block cipher, partially decrypting/encryptingwith awrong key up to the boundary10

of the linear approximation, the adversary faces a randomly drawn permutation instead of the11

expected cipher structure with rounds peeled off. This assumption has been partially called12

into question by Andrey Bogdanov and Elmar Tischhauser [BT13] and found that significant13

biases arising from wrong keys are unduly underestimated.14

Expressionsmore complex than (2.10) allow to use a linear approximation of the last 𝑟−𝑡 rounds15

of the cipher, which may be useful in case it is possible to compute backwards the required bits16

of the last 𝑡 rounds of the cipher without using all the entropy of the secret key.17

2.2.3 Chosen-Plaintext Linear Cryptanalysis18

Lars Knudsen and John Erik Mathiassen show that the efficiency of Matsui’s linear cryptanal-19

ysis can be improved by use of chosen plaintexts [KM00a]. With respect to more recent im-20

provements, this variant has worse complexity but as François Koeune et al. [KRS+02] remark,21

it is better suited for hardware implementations, leading - in 2002 - to a successful key recovery22

attack on the DES that takes less than 15 hours, using hardware roughly worth $ 3500.23

2.2.4 Multiple Linear Approximations24

Burton Kaliski and Matt Robshaw use first several linear approximations simultaneously to25

obtain more information [KR94a, KR94b]. Their approximations are of the same linear com-26

bination of the key bits, and the various approximations must be linearly independent. With27

several approximations28

⟨ �𝑃, ℐ (𝑖)
𝑃 ⟩ � ⊕ ⟨ �𝐶, ℐ (𝑖)

𝐶 ⟩ � = ⟨𝐾, ℐ𝐾⟩

with bias 𝜀𝑖, for 1 ⩽ 𝑖 ⩽ 𝑚 they need 1 / ∑𝑚
𝑖=1 𝜀2

𝑖 ciphertexts to recover a key parity. Alex29

Biryukov, Christophe De Cannière and Michaël Quisquater in [BCQ04] and improve the com-30

plexity to 1 /4 ∑𝑚
𝑖=1 𝜀2

𝑖 where also linearly dependent relations can be taken into account – de31

facto improving the complexity of the attack up to 𝑚 bits, however the growth is not proven32

and has been only verified experimentally by Baudoin Collard, François-Xavier Standaert and33

Jean-Jacques Quisquater [CSQ08].34

2.2.5 Multidimensional Linear Cryptanalysis35

Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg [HCN08, CHN08] further improve the attacks36

based on multiple linear approximations in [BCQ04] and formally proved complexity bound37
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with fully relaxed requirement for linear independence of the relations. In multidimensional1

linear cryptanalysis the space of the linear approximations has dimension 𝑚 and can be param-2

eterized by the elements of a 𝑚-dimensional vector space 𝑉. The complexity of the attack is3

𝑚 /2 ∑𝑚
𝑎∈𝑉 𝜀(𝑎)2. In [NWWL10] Phuong Ha Nguyen, Lei Wei, Huaxiong Wang and San Ling4

improve (practically, not asymptotically) these attacks. Miia Hermelin and Kaisa Nyberg fur-5

ther develop the theory of multidimensional linear cryptanalysis in [HN11].6

2.2.6 Zero-Correlation Cryptanalysis7

Zero correlation linear cryptanalysis [BR11b, BW12, BLNW12] is the counterpart of impossible dif-8

ferential cryptanalysis in the domain of linear cryptanalysis. It is a key recovery attack. Instead9

of designing the attack around a linear hull that presents a significant bias, a linear hull (a linear10

approximation) for some middle rounds of the cipher that presents no bias is chosen.11

Let the cipher 𝐸 = 𝐸𝐾 bewritten as 𝐸𝐾 = 𝐹𝐾∘𝑀𝐾∘𝐼𝐾 where 𝐼,𝑀, and 𝐹 denote the compositions12

of the initial, middle and final rounds, respectively, of the cipher 𝐸.13

Then, for each possible key guess 𝐾, plaintexts are encrypted for the rounds that precede the14

linear hull and the corresponding ciphertexts are decrypted through the last rounds, i.e, 𝐼𝐾(𝑃)15

and 𝐹−1
𝐾 (𝐶) are computed, where (𝑃, 𝐶) is a plaintext/ciphertext pair. Then the bias of the16

chosen linear approximation of the values of 𝐼𝐾(𝑃), 𝐹−1
𝐾 (𝐶) and𝐾 is evaluated. If this bias is zero,17

then the key guess𝐾 wasmost likely correct. To efficiently evaluate the bias, several algorithmic18

improvements exist, the most important being the use of Fast Fourier Transforms [BGW+13].19

Some cipher types present zero bias linear approximations essentially by design:20

• Theorem 2 of [BR11b] shows that Rijndael data obfuscation (Section 3.20 on page 182) has a21

set of zero correlation linear approximations over 4 rounds (to bemore precise, 3 full rounds22

appended by 1 incomplete rounds with MixColumns omitted). This leads to successful23

attacks on 6 rounds of AES-192 and AES-256 with time complexity 2188.4.24

• Theorem 1 of [BR11b] states that Type-2 generalized Feistel networks with 4 branches (Sec-25

tion 1.3 on page 28) have zero correlation linear approximations over 9 rounds, if the under-26

lying F-functions of the Feistel construction are invertible. A notable example of this fact is27

given by CLEFIA (Section 3.28 on page 203).28

Since this is just a particular type of linear analysis, it can be combined with other improve-29

ments. For instance, in [BW12] multiple approximations of correlation zero are used to attack30

TEA and XTEA, leading to the best attack on TEA to date (cf. Section 3.12 on page 161). We31

have mentioned that for Matsui-type linear cryptanalysis the use of multiple approximations32

can be generalised multidimensional linear cryptanalysis, and the same is true for zero cor-33

relation cryptanalysis. In [BLNW12] Andrey Bogdanov, Gregor Leander, Kaisa Nyberg and34

Meiqin Wang show propose multidimenstional distinguishers by which they can show that35

integrals cryptanalysis can be seen a special case of zero correlation cryptanalysis and these36

concepts are applies to the best attack to date to CAST-256 without weak key assumptions (cf.37

Subsection 3.7.2 on page 149).38
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2.2.7 Nonlinear Approximations1

A generalization using nonlinear approximations has been introduced by Lars Knudsen and2

Matt Robshaw in [KR96c]. The technique was applied to LOKI91, a forerunner to AES con-3

test submission LOKI91 (Subsection 3.19.5 on page 181), and improved both effectiveness and4

complexity with respect to previous attacks to LOKI97.5

Juan Tapiador, John Clark, and Julio Hernández Castro observe [ETCC07] that a problem con-6

cerning non-linear functions is how to identify them efficiently, given that the search space is7

superexponential in the number of variables, and tackle this problem by using heuristic search8

techniques, in particular Simulated Annealing. This is still an active area of research.9

In [MC13b] nonlinear approximations are applied to Serpent, resulting in a new attack on 11-10

round Serpent with better data complexity than any other known-plaintext or chosen-plaintext11

attack to date.12

2.2.8 Countermeasures13

We now see how to make a cipher resistant to linear cryptanalysis.14

2.2.8.1 Matsui-Type Linear Cryptanalysis15

We have described in Section 1.9 on page 56 the conditions an S-box must satisfy in order to16

harden a cipher against linear cryptanalysis. This, in principle, works against Matsui’s Algo-17

rithm 1.18

Against Algorithm 2 type linear cryptanalysis one should make sure that the information pro-19

vided by the key is used completely in as few rounds as possible, both at the beginning and at20

the end of the cipher, in order to make it pointless to use linear approximations of the almost21

complete cipher. This applies not only to Feistel ciphers, but also to block ciphers when the key22

size is larger than the block size.23

2.2.8.2 Zero-Correlation Cryptanalysis24

It is clear that making a cipher too resistant against Matsui-Type linear cryptanalysis can open25

up the possibility of a zero-correlation attack. The best defence in this case is to make the outer26

rounds as dependent on as much of the entropy provided by the key bits as much as possible,27

in order to make the key space search part of the attack equivalent to brute force.28

Indeed, most instances of this type of attack are on ciphers with a key larger than the block size,29

which means that unavoidably only part of the key entropy is used in the outermost rounds.30

For such ciphers, therefore, the design of the key schedule is of the paramount importance.31

This also means that the defences against zero correlation cryptanalysis are usually subsumed32

in the defences against other types of attacks, for instance MITM attacks and their variants (see33

Section 2.4 on page 97), and slide attacks (Section 2.6.2 on page 110).34

2.3 Differential-Linear Cryptanalysis35

Susan Langford and Martin Hellman proposed the differential-linear attack in 1994 [LH94]. It36

is a mix of linear and differential cryptanalyses. The block cipher is first partitioned into two37
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parts, i.e. 𝐸 = 𝐺∘𝐹. The first part, 𝐹, is covered by a (truncated) differential characteristic 𝛥 ∇,1

and the second part 𝐺 by a linear characteristic. Then, a differential with probability 𝑝 for 𝐹 is2

used to obtain a difference in the middle of the cipher, i.e. for the inputs to 𝐺.3

Suppose that for a pair of plaintexts 𝑃 and 𝑃∗ with 𝑃⊕𝑃∗ = 𝛥, the truncated differential relation4

(�𝐹(𝑃)⊕𝐹(𝑃∗))�∧𝑋 = ∇ holdswith probability 𝑝, where𝑋 is a vector used to select just the output5

bits needed by the truncated differential. Let 𝜆 𝜆′ be the linear characteristic for 𝐺, where6

⟨𝑇, 𝜆⟩ ⊕ ⟨𝐺(𝑇), 𝜆′⟩ = 𝑎 holds with likelihood 𝜖 for a fixed 𝑎 = 0 or 1. We also assume that the7

support of the vector 𝜆 is contained in the support of 𝑋 (i.e. 𝜆 ∧ 𝑋 = 𝜆 but 𝜆 ∧ ¬𝑋 = 0). In fact,8

w.l.o.g. we can assume that 𝑋 = 𝜆.9

Since we know that (�𝐹(𝑃) ⊕ 𝐹(𝑃∗))� ∧ 𝑋 = ∇ with probability 𝑝, we have that10

⟨𝐹(𝑃), 𝜆⟩ ⊕ ⟨𝐹(𝑃∗), 𝜆⟩ = ⟨∇, 𝜆⟩ =∶ 𝛬

with probability at least 𝑝. We also have that11

⟨𝐸(𝑃), 𝜆′⟩ = ⟨𝐹(𝑃), 𝜆⟩ ⊕ 𝑎
⟨𝐸(𝑃∗), 𝜆′⟩ = ⟨𝐹(𝑃∗), 𝜆⟩ ⊕ 𝑎

(2.11)

hold each with probability 1
2 + 𝜖 for a non-negligible bias 𝜖 > 0. Summing these relations we12

obtain13

⟨𝐸(𝑃) ⊕ 𝐸(𝑃∗), 𝜆′⟩ = 𝛬 . (2.12)

Now, (2.12) holds if and only if the two relations (2.11) are simultaneously either both satisfied14

or both not satisfied. Therefore, (2.12) holds with probability (�1
2 + 𝜖)�2 + (�1

2 − 𝜖)�2 = 1
2 + 2𝜖2,15

and we thus obtain the bias16

𝒫 [�⟨𝐸(𝑃) ⊕ 𝐸(𝑃 + 𝛥), 𝜆′⟩ = 𝛬] � − 𝑝
2 ⩾ 2𝑝𝜖2 .

Note that this bias holds for a single bit valued function, but it can still be successfully used in17

*R attacks to distinguish right from wrong key guesses.18

Initially, the differential characteristic was chosen with probability 𝑝 = 1. With this restriction,19

Langford and Hellman were able to break 8 rounds of DES, and their attack on 8 round DES is20

still the best such attack.21

The technique was used in the subsequent years to analyse IDEA (Section 3.6 on page 144): a re-22

duced version of IDEA was analyzed by means of a differential-linear attack by Alex Biryukov23

and Eyal Kushilevitz in [BK98a], and differential-linear weak keys of the full IDEA were found24

by Philip Hawkes in [Haw98], along with a related-key differential-linear attack on reduced25

IDEA. Johan Borst, Lars Knudsen and Vincent Rijmen showed also that the extension of dif-26

ferential and linear cryptanalysis to ciphertext-only attacks works in the context of differential-27

linear cryptanalysis as well [BKR97].28

Eli Biham,OrrDunkelman andNathanKeller in [BDK02a] present an extension of the Langford-29

Hellman cryptanalysis in which the linear probability induced by the differential characteristic30

is smaller than 1. They apply their results to 9 and 10 rounds of DES and to full COCONUT98.31

In particular, they provide the best attack, to the date the paper was published, to a 9 rounds32

version of the cipher, requiring 215.8 chosen plaintexts and time 229.2 reduced encryptions.33
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Recently, Zheng Yuan, Xian Li and Haixia Liu [YLL13] presented an impossible differential-linear1

attack on reduced-round CLEFIA. In this attack a distinguisher is constructed using an impos-2

sible differential with probability 1 for 𝐹, and a linear approximation with non-zero bias for 𝐺.3

A 13-round impossible differential-linear distinguisher is constructed in [YLL13] and it is used4

to mount an attack on 16-round CLEFIA with whitening keys with data complexity of 2115.52,5

recovering 96 bits of the key. However this attack is at the moment of purely theoretical interest6

since the time complexity is 2171.7

Zhiqiang Liu, Dawu Gu, Jing Zhang and Wei Li [LGZL09] further improve the technique by8

concatenating multiple linear characteristics to a single differential characteristic. Using their9

improvement they can break 9 rounds of DES faster than the 2002 Biham-Dunkelman-Keller10

attack, requiring 214.1 chosen plaintexts and time 225.93 reduced encryptions.11

Jiqiang Lu [Lu12] improves the probabilities in the original setting 𝑝 = 1, and attacks 13 rounds12

of DES with 252.1 chosen plaintexts and time 242.2.13

At FSE 2014 Céline Blondeau, Gregor Leander, and Kaisa Nyberg [BLN14] remarked that none14

of the papers on differential-linear cryptanalysis so far used the links between differential and15

linear cryptanalysis from [CV94] and subsequent papers (as cited in [BLN14]) in their analysis.16

They then use this theory to give better estimated of the bias of the differential-linear charac-17

teristics. They do not present practical applications.18

2.4 Meet-in-the-middle Attacks and Bicliques19

Meet-in-the-middle (MITM) attacks have been used in the early times of block cipher design20

to prove that some constructions were weaker than initially thought – for instance in the case21

of multiple encryption. This class of attacks has been subsequently quickly overshadowed by22

differential and linear cryptanalysis – until recently, when various improvements allowed to23

successfully attack newer ciphers, especially lightweight ones. In this section we shall review24

MITM attacks, their variants, and recent developments.25

2.4.1 Meet-in-the-middle Attacks26

In their simplest form, MITM attacks apply to the following scenario. The cipher 𝐸 = 𝐸𝐾 can27

be written as the composition of two subciphers 𝐸 = 𝐸2 ∘ 𝐸1 (with inverses 𝐷, 𝐷1, and 𝐷2), and28

two complementary key bit sets 𝒦1 and 𝒦2 (i.e. 𝒦1 ∩ 𝒦2 = ∅ and 𝒦1 ∩ 𝒦2 = 𝒦 , the set of29

all key bits) exist with the following properties: 𝐸1 = 𝐸1
𝑘1
, where 𝑘1 is dependent only on the30

key bits 𝒦1 and 𝐸2 = 𝐸2
𝑘2
, where 𝑘2 is dependent only on the key bits 𝒦2. Thus, it is possible31

to view 𝑘1 and 𝑘2 as subkeys of the key 𝐾.32

If some plaintext/ciphertext pairs (𝑃, 𝐶) are available, the attack proceeds as follows:33

1. For a plaintext 𝑃 compute and store 𝐸1
𝑘1

(𝑃) for all subkeys (or partial keys) 𝑘1 in a table 𝑉.34

2. For the corresponding ciphertext 𝐶 compute 𝑣 = 𝐷2
𝑘2

(𝐶) for each partial key 𝑘2.35

3. If 𝑣 is in the table 𝑉, use 𝑘1 and 𝑘2 to construct a key candidate.36

4. Verify the candidate using other plaintext/ciphertext pairs.37
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The time complexity is given by 2#𝒦1 + 2#𝒦2 + 2#𝒦−𝑏 computations where 𝑏 is the block size.1

Storage is 2min{#𝒦1,#𝒦2} (because if #𝒦1 > #𝒦2 one can store the values𝐷2
𝑘2

(𝐶) in a table instead2

and search all the 𝐸1
𝑘1

(𝑃) in it).3

In this form the attack was used by Whitfield Diffie and Martin Hellman [DH77] to prove that4

the security of double DES encryption with two independent 56 bit keys is lower than a naïve5

expectation of 112 bits, and in fact it is still 56 bits. For this reason TripleDES (cf. Subsection 3.2.86

on page 134) was developed, with the aim to offer 112 bits of security using 112 bits of key7

material. Ralph Merkle and Martin Hellman [MH81] proved that it can still be defeated in8

time and space 𝑂(256) by a chosen plaintext attack, which we shall describe this attack shortly9

(Subsection 2.4.4 on page 102). David Chaum and Jan-Hendrik Evertse [CE85] mount MITM10

attacks to up to 6 initial rounds or 7 rounds starting with the second of DES (improved attacks11

can be found in [DSP07]).12

Research focused then again on hash functions. Some milestones are: second preimages for13

hash functions based on iterated block ciphers [LM92]; preimages for MD4, 63-step MD5, step14

reduced SHA-2 [AS08, AGM+09]; and preimages for full Tiger [GLRW10].15

The pendulum swung again and new results on block ciphers were published, starting with16

attacks on KTANTAN [BR10, WRG+11]. The two main ideas in [BR10] are: the key bit sets 𝒦117

and 𝒦2 are not necessarily disjoint; and a set of key candidates is kept to be sieved later. We18

shall describe the first of these two ideas in Subsection 2.4.3 on page 100.19

After some further development on hash function cryptanalysis (for instance, the results on20

SHA-2 and Skein-512 in [KRS12]) a new technique was introduced, the use of bicliques, that21

can be roughly described as a clever way of using precomputations to speed up MITM at-22

tacks that otherwise would not be better than brute force. Bicliques led to the first crypt-23

analysis of full round AES, by Andrey Bogdanov, Dmitry Khovratovich, and Christian Rech-24

berger [BKR11a, BKR11b], quickly followed by the first cryptanalysis of full round IDEA to-25

gether with impressive speed-ups with respect to previous reduced round versions of the same26

cipher [KLR12]. They will be described in Subsection 2.4.5 on page 104.27

2.4.2 Space-Memory Tradeoffs28

There are notmany genericways to break a cipher (or to invert a oneway function). One obvious29

way is of course brute force (i.e. exhaustive search), with a memory footprint of 𝑂(1) and time30

𝑁. Another method consists in precomputing all possible pairs (𝑘, 𝐸𝑘(𝑃)) for all possible keys31

𝑘 for a fixed 𝑃, store them in a sorted (or hash) table according to the ciphertexts and then32

retrieve candidate keys by a table lookup. This is called a dictionary attack, and requires as33

much memory as the key space, which is in general impractical.34

Martin Hellman [Hel80] shows how to dramatically reduce storage requirements of dictionary35

attacks. by using chains of values.36

Let us consider first the case of a function 𝑓 ∶ 𝐷 𝐷, with𝑁 = #𝐷, and that wewant to compute37

the preimages of several elements 𝑦. So we start from a point 𝑥1 and compute 𝑥𝑖+1 = 𝑓 (𝑥𝑖) for38

1 ⩽ 𝑖 < 𝑁, and store each 𝑠-th point, there 𝑠 = ⌊√𝑁⌋, i.e. we store 𝑥1, 𝑥𝑠+1, 𝑥2𝑠+1, …. This is a39

once time only precomputation stage, or offline stage. In the online stage, for each point 𝑦 we40

compute 𝑓 𝑖(𝑦) until a stored 𝑥𝑘𝑠+1 is encountered. Then retrieve 𝑥(𝑘−1)𝑠+1 from the table and41

apply 𝑓 to it until 𝑦 is calculated – which means that the preimage has been found.42
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Precomputation cost is𝑁, storage is 𝑆 = √𝑁 and online time is also 𝑇 = √𝑁. Different tradeoffs1

are obtained storing more or less points, which makes the online stage faster or slower.2

However this works only if 𝑓 includes a single cycle. It can also be adapted to the case where 𝑓3

is a permutation. But, in general, we have to consider the cases where the function 𝑓 is random,4

so there may be collisions between chains 𝑓 𝑖(𝑥) for different values of 𝑥.5

Suppose then we have a random function 𝑓 ∶ 𝐷 𝐷. Important examples are obtained from a6

block cipher 𝐸 = 𝐸𝑘(𝑃) with key size of ℓ, with 𝑁 = 2ℓ, and a block size of 𝑛, and a fixed point7

𝑃. If 𝑛 = ℓ, then 𝑓 (𝑥) = 𝐸𝑥(𝑃). If 𝑛 > ℓ, we take a reduction function 𝑅 that maps a ciphertext to8

a key (in the case of ciphers like the DES it indeed reduces the values to smaller ones) and put9

𝑓 (𝑥) = 𝑅(𝐸𝑥(𝑃)). If 𝑛 < ℓ, then we define 𝑓 (𝑥) as the concatenation of enough 𝐸𝑥(𝑃1), 𝐸𝑥(𝑃2), …,10

so that the total length of the texts is at least as big as ℓ, possibly reduced by a suitable reduction11

function if ℓ is not an exact multiple of 𝑛.12

For the offline stage, for any starting point 𝑥1 define a sequence as follows13

𝑥𝑖+1 = 𝑅(𝐸𝑥𝑖
(𝑃)) = 𝑓 (𝑥𝑖) = 𝑓 𝑖(𝑥1) .

Now, pick a parameter 𝑡, and random starting points (i.e. key values) 𝑥(1), 𝑥(2), … 𝑥(𝑡). For each14

starting point 𝑥(𝑗), compute the chain of length 𝑚 starting at 𝑥(𝑗), i.e. 𝑥(𝑗)
1 , 𝑥(𝑗)

2 , …, 𝑥(𝑗)
𝑚 , and store15

only the starting and ending points, i.e. keep a table of the pairs (�𝑆𝑃𝑗, 𝐸𝑃𝑗)� ∶= (�𝑥(𝑗)
1 , 𝑥(𝑗)

𝑡 )�. Storage is16

then 𝑚 (ignoring small constants) and time to create this structure is 𝑚𝑡. The pairs are sorted17

(or hashed) on the final points.18

In the online stage the attacker uses the target encryption oracle to compute 𝐸𝑘(𝑃) under an19

unknown key, then starts with 𝑧1 = 𝑅(𝐸𝑘(𝑃)) and computes 𝑧𝑖+1 = 𝑓 (𝑧𝑖) = 𝑓 𝑖(𝑧1), which is of20

course𝑅(𝐸𝑧𝑖
(𝑃)), for at most 𝑡 steps. Hopefully (i.e. for a high percentage of all the keys) at some21

point the attacker will find a value that is equal to one of the end points. Now the attacker will22

have to start from the corresponding starting point and repeat the computation, to see if 𝑅(𝑧1) is23

actually in that chain, in which case the previous value in the chain is a candidate key.24

In theory, in a perfect situation where no two chains merge for the given starting points, and25

with no false positives in the online phase, one could choose 𝑚 = 𝑡 = 𝑁1/2 and have an attack26

that needs𝑁1/2 storage and𝑁1/2 online time. This is exactly what happens if 𝑓 is a permutation.27

Also, this contradicts the behaviour of a random function.28

In order to reduce false positives, 𝑟 different tweaks 𝑓𝑖 of the original function 𝑓 are used, for29

instance different reduction functions are used, and the tables of starting end ending points are30

computed for each reduction function. Hence the memory usage becomes 𝑚𝑟 and the time to31

generate the offline structure𝑚𝑡𝑟. The online time to find the key is then 𝑡𝑟. If𝑚 = 𝑡 = 𝑟 = 𝑁1/3,32

the storage for the offline table is 𝑁2/3, and the online time is also 𝑁2/3. In this situation it can33

be shown that the success probability is 0.55.34

Rivest [Den82], page 100, suggested to use distinguished points (for instance keywhose internal35

representation begins with a string of ten zero bits, say) and stopping chain computation at36

when those points have been found – for all chains, both in the offline and online stage.37

Paul van Oorschot and Michael Wiener [vOW96] formulate MITM attacks as collision search38

problems. Given two functions 𝑓0 and 𝑓1 two values 𝑎 and 𝑏 are sought such that 𝑓0(𝑎) = 𝑓1(𝑏).39

The domains are then joined and a function 𝑓 (𝑎, 𝑖) ∶ 𝐷×{0, 1} 𝑅 is created such that 𝑓 (𝑎‖𝑖) = 𝑓𝑖(𝑎)40
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for all 𝑎 ∈ 𝐷 and 𝑖 ∈ {0, 1}. Hence the collision which is sought is 𝑓 (𝑎‖0) = 𝑓 (𝑏‖1). With1

likelihood 1/2 a collision 𝑓 (𝑎‖𝑖) = 𝑓 (𝑏‖𝑗) will have 𝑖 = 𝑗, in the other half of cases 𝑖 ≠ 𝑗 and2

therefore a successful MITM candidate will have been identified. They also use distinguished3

points to further reduce the memory storage.4

The tradeoff techniques just presented can be often combined with the methods described in5

the following subsections – however in each case a specific analysis has to be performed, and it6

cannot be assumed that they automatically lead to improvements.7

2.4.2.1 Further Tradeoffs8

A further important idea to reduce collisions among chains is the use of rainbow tables. A9

rainbow table is a table where a different reduction function is used for each column of the10

table, so a chain looks like as follow:11

𝑧1 𝑧2 𝑧3 𝑧4 … 𝑧𝑚 .
𝑓1 𝑓2 𝑓3 𝑓4 𝑓𝑚−1 (2.13)

Thus two different chains can merge only if they have the same key at the same position of12

the chain. This makes it possible to generate much larger tables. Actually, a rainbow table13

acts almost as if each column of the table was a separate single classic table. Indeed, collisions14

within a classic table (or a column of a rainbow table) lead tomergeswhereas collisions between15

different classic tables (or different columns of a rainbow table) do not lead to a merge. This16

technique has been prove in password recovery, less so in other cryptanalitic contexts.17

Amos Fiat and Moni Naor [FN99] provide rigorous time/space tradeoffs 𝑇𝑆2 = 𝑁3𝑞( 𝑓 ) for18

inverting any function 𝑓 , where 𝑞( 𝑓 ) is the probability that two random elements have the same19

image under 𝑓 . A more general tradeoff 𝑇𝑆3 = 𝑁3 is also given in [FN99].20

2.4.3 Partial Matching (Match- and Sieve-in-the-Middle)21

Sometimes it may be impossible to partition the cipher in a useful way into chunks that cover22

it completely and depend only on disjoint sets of key bits.23

To overcome these hurdles, in [BR10] overlapping key bit subsets are used, aswell as a technique24

called partial matching, or match-in-the-middle.25

The cipher is factored into three chunks 𝐸 = 𝐸2 ∘ 𝑀 ∘ 𝐸1 where𝑀 is a middle chunk that allows26

match 𝑚 bits of information, with 0 < 𝑚 ⩽ 𝑏, 𝑏 being the block size (whence the technique is27

also referred as “match-in-the-middle”).28

Instead of looking for state collisions in the middle of the cipher, both forward and backward29

computations, i.e. the computations through 𝐸1 and 𝐷2 stop at the beginning and end of the30

middle function 𝑀, and a (partial) collision if found by computing “through” M.31

Usually 𝑀 just allows only a few bits to be directly compared, or through 𝑚 linear relations32

between input and output involving at least one input and not output bit, as in Takanori Isobe33

and Kyoji Shibutani’s analysis of XTEA, LED and Piccolo [IS12] or in the analysis of full IDEA34

by Dmitry Khovratovich, Gaëtan Leurent and Christian Rechberger in [KLR12].35

The chunks 𝐸1, resp. 𝐸2 depend only on the key bits 𝒦1, resp. 𝒦2, where 𝒦1 ∪ 𝒦2 is the set36

𝒦 of all key bits, and we set 𝒜0 ∶= 𝒦1 ∩ 𝒦2. If 𝒜0 ≠ ∅ then we are in the situation called the37
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3-Subset MITM attack by Andrey Bogdanov and Christian Rechberger.1

Anne Canteaut, María Naya-Plasencia and Bastien Vayssière describe in [CNPV13a] a general-2

isation of the Match-in-the-Middle and 3-Subset MITM attacks, which they name sieve-in-the-3

middle. In some cases, it allows to extend MITM attacks to a higher number of rounds than4

previously possible.5

As in Match-in-the-Middle attacks, forward and backward computations stop at the beginning6

and end of themiddle function𝑀. Instead of computing “through”M, in [CNPV13a] a particu-7

lar middle function 𝑆 is computed instead of𝑀. The function is denoted by the letter 𝑆 because8

it is often an S-box, but it can also be a superBox (as in the case of the AES) or an arbitrary com-9

ponent of the cipher. This function can of course be 𝑀 itself, but one of the reasons it can be10

restricted is that it can be used to pre-filter the possible key candidates, which are then verified11

later. In other words, 𝑆 serves to efficiently discard – i.e. sieve – all key candidates which do not12

correspond to a valid transition through it. Then, a merging step collects the keys that are not13

discarded into a single list, and these are then tested until the correct key is found.14

The target cipher is then, as already mentioned, written as 𝐸 = 𝐸2 ∘ 𝑀 ∘ 𝐸1 where for simplicity15

𝐸, 𝐸1, 𝑀, 𝐸2 are represented as functions 𝔽 𝑛
2 𝔽 𝑛

2 .16

Also, there are functions 𝜙𝑓 (the lower case 𝑓 stands for “forward”) and 𝜙𝑏 (the lower case 𝑏17

stands for “backward”) and 𝑆, together with subsets 𝐼 and 𝐽 of [0..𝑛 − 1] of bit positions, with18

following properties:19

• 𝑢 = 𝜙𝑓 (𝑥) is obtained by restricting 𝐸1(𝑥) to just the bits in the positions 𝐼;20

The function 𝜙𝑓 depends only on a subset 𝐾1 of the bits of the secret key;21

• 𝑣 = 𝜙𝑏(𝑦) is obtained by restricting 𝐷2(𝑦) to just the bits in the positions 𝐽;22

The function 𝜙𝑏 depends only on a subset 𝐾2 of the bits of the secret key;23

• The function 𝑆 maps 𝑢 to 𝑣, i.e. the bits in positions 𝐼 of 𝐸1(𝑥) to the bits in positions 𝐽 of24

𝐷2(𝑦), for a valid 𝑦 = 𝐸(𝑥).25

For instance, in a SPN the function 𝜙𝑓 can be taken as the function that maps the plaintext to26

the input to a specific S-box 𝑆 in the i-th round, and 𝜙𝑏 as the function that partially decrypts27

the ciphertext until the output of the same S-box.28

Put 𝒜0 ∶= 𝒦1 ∩ 𝒦2. It can be 𝒜0 = ∅ or ≠ ∅, the latter case being called the 3-Subset Attack.29

and 𝒜𝑖 ∶= 𝒦𝑖 ∖ 𝒜0 for 𝑖 = 1, 2.30

Let (𝑃, 𝐶) be a plaintext/ciphertext pair.31

The following steps are performed for all partial keys 𝐾0 defined over 𝒜0 (if 𝒜0 = ∅ there is no32

need to loop over the keys 𝐾0):33

1. Start with two empty lists ℒ𝑓 and ℒ𝑓 .34

2. For all partial keys 𝐾1 defined on 𝒜1 compute 𝑢 = 𝜙𝑓 (𝑃) and add (𝑢, 𝐾1) to ℒ𝑓 .35

3. For all partial keys 𝐾2 defined on 𝒜2 compute 𝑣 = 𝜙𝑏(𝐶) and add (𝑣, 𝐾2) to ℒ𝑏.36

4. Merge the lists ℒ𝑓 and ℒ𝑏 to obtain a list ℒ𝑠𝑜𝑙 formed by candidate partial key pairs (𝐾1, 𝐾2)37

for which an 𝑥 ∈ 𝔽 𝑛
2 exists such that 𝑢 = (𝑥𝑖, 𝑖 ∈ 𝐼) and 𝑣 = (𝑆(𝑥)𝑗, 𝑗 ∈ 𝐽).38
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The lists ℒ𝑠𝑜𝑙 for each partial key 𝐾0 are joined together and the keys contained therein are1

tested. This step can also be interleaved with the merging of ℒ𝑓 and ℒ𝑏.2

Obviously, the whole secret key can be recovered only if the key length does not exceed the3

blocksize. Otherwise, 2ℓ−𝑛 possible keys will be returned in average where ℓ is the key length4

– and this will be a lower bound for the memory usage.5

We say that any pair (𝐼, 𝐽) of sets of size (𝑚, 𝑝) with 𝑚 + 𝑝 > 𝑛 is a sieve for 𝑆 with sieving6

probability 𝜋𝐼,𝐽 ⩽ 2𝑛−(𝑚+𝑝). The running time is7

2#𝒜0(�2#𝒜1𝑐𝑓 + 2#𝒜2𝑐𝑏 + 𝐶𝑚𝑒𝑟𝑔𝑒)� + 𝜋𝐼,𝐽2ℓ𝐶𝐸

where 𝑐𝑓 and 𝑐𝑏 are the costs of evaluating 𝜙𝑓 and 𝜙𝑏, 𝐶𝑚𝑒𝑟𝑔𝑒 is that of merging the lists ℒ𝑓 and8

ℒ𝑏, and 𝐶𝐸 is that of one encryption. This running time is thus very similar to that of match-9

in-the-middle attacks, but the strategy can win if a suitable choice of 𝑆 and a good merging10

strategy can be found. Also, it is obviously crucial that verifying whether 𝑆 permits a valid11

transition be significantly faster than direct candidate key verification.12

Merging can be done in several different ways, as shown in [CNPV13a]. One of the most pow-13

erful tools is to partition one of the lists ℒ𝑓 , ℒ𝑏 into smaller sublists and use precomputations14

to speed up the matching. Matching can also be done using a recursive approach (what Can-15

teaut et al. call gradual matching) and in parallel with a negligible memory footprint adapting16

techniques from [DDKS12] and [NP11].17

The sieve-in-the-middle method can be combined in a natural waywith some of the techniques18

presented later, such as Splice-and-Cut and Bicliques.19

2.4.4 Splice-and-Cut: The Merkle-Hellman Attack20

Wedescribe nowRalphMerkle andMartinHellman’s key recovery attack [MH81]. It is a chosen21

plaintext MITM attack. It applies to any cipher 𝐸 = 𝐸𝑘1,𝑘2
constructed from a cipher 𝑆 in the22

same way as the Triple DES, i.e. 𝐸𝑘1,𝑘2
= 𝑆𝑘1

∘ 𝑆−1
𝑘2

∘ 𝑆𝑘1
where 𝑘1 and 𝑘2 are two subkeys.23

However, it does not hurt to consider the following more general situation, that covers also24

the case of the 2-key Triple DES construction: the cipher 𝐸 can be written as the functional25

composition of three chunks 𝐸𝑘1,𝑘2
= 𝐸3

𝑘1
∘ 𝐸2

𝑘2
∘ 𝐸1

𝑘1
where the key 𝑘1 of 𝐸1 and 𝐸3 only depends26

on key bits 𝒦1 and the key 𝑘2 of 𝐸2 depends on key bits 𝒦2. Let 𝐷, resp. 𝐷𝑖 (𝑖 = 1, 2, 3) denote27

the decryption functions of 𝐸, 𝐸𝑖. Also let 𝑛 be the block size of the cipher.28

Then, for any plaintext/ciphertext pair (𝑃, 𝐶) there are two intermediate values 𝑢, 𝑣 such that29

𝑃 𝑢 𝑣 𝐶 .
𝑘1

𝐸1

𝑘2

𝐸2

𝑘1

𝐸3

𝒪

(2.14)

The attack assumes the adversary has access to an encryption oracle 𝒪 for 𝐸, for unknown, fixed30

keys 𝑘1 and 𝑘2. It works as follows:31

1. Fix a value ̄𝑢, for instance ̄𝑢 = 0.32

2. Compute and store a table 𝑉 of the values 𝑣𝑗 = 𝐸2( ̄𝑢) for all keys 𝑗 on the bits 𝒦2.33
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3. For each key 𝑖 on the bits 𝒦1, perform the following steps:1

(a) compute 𝑃𝑖 = 𝐷1
𝑖 ( ̄𝑢), 𝐶𝑖 = 𝒪(𝑃𝑖), and 𝑣′

𝑖 = 𝐷3(𝐶𝑖);2

(b) determine if the value 𝑣′
𝑖 is in the table 𝑉, i.e. if there exists a key 𝑗 such that 𝑣′

𝑖 = 𝑣𝑗;3

(c) if a match is found, then (𝑖, 𝑗) is a candidate for (𝑘1, 𝑘2);4

verify it on one or more additional plaintext/ciphertext pairs.5

To understand why (𝑖, 𝑗) with 𝑣′
𝑖 = 𝑣𝑗 is a candidate for (𝑘1, 𝑘2) observe that the collision6

̄𝑢 𝑃𝑖 𝐶𝑖 𝑣′
𝑖 = 𝑣𝑗 ̄𝑢𝑖

𝐷1 𝒪
𝑖

𝐷3

𝑗

𝐸2

implies that the following diagram7

𝑃𝑖 ̄𝑢 𝑣𝑗 = 𝑣′
𝑖 𝐶𝑖

𝑖

𝐸1

𝑗

𝐸2

𝑖

𝐸3

𝒪

commutes, i.e. at least for the pair (𝑃𝑖, 𝐶𝑖) the cipher 𝐸𝑖,𝑗 behaves like 𝐸𝑘1,𝑘2
.8

Storage is required only for the table 𝑉, i.e. 2#𝒦2 entries. The running time is 𝑂(2#𝒦1 + 2#𝒦2).9

The exact complexity depends on the likelihood that a match at step 3(c) is actually a match10

for the keys. Generally speaking a match should be confirmed on at least one more plain-11

text/ciphertext pair than ⌊#𝒦1/𝑛⌋. If 𝒦2 > 𝒦1 the storage requirement can be reduced by12

storing the values 𝑣′
𝑖 instead and matching the 𝑣𝑗 against them.13

The first such MITM attack to a block cipher is found in [WRG+11].14

This attack was first called “splice-and-cut” (as applied to the compression function of a hash15

function) by Kazumaro Aoki and Yu Sasaki in [AS08], where it is described thusly:16

We consider the first and last steps of the attack target as consecutive steps. Then, we divide17

the attack target into two chunks of steps so that each chunk includes at least one message18

word that is independent from the other chunk.19

The last and first step of the target need to be “spliced” together, i.e. the output of the last step20

must be transformed into a useful input to the first step. In the context of Davies–Meyer hash21

functions this is often done by choosing the input message to influence the feedback addition.22

In the context of block ciphers we have seen that the encryption oracle serves this purpose.23

Initial splice-and-cut attacks on hash functions and block ciphers were all chosen message (ci-24

phertext) attacks. Paul van Oorschot and Michael Wiener introduced in [vOW90] a variant25

of the attack against the 2-key Triple DES construction that relies on a table of known plain-26

text/ciphertext pairs (𝑃, 𝐶) and waits until a collision between the computed 𝑃𝑖 = 𝐷1
𝑖 ( ̄𝑢) and a27

known plaintext 𝑃 is found. If no match occurs, a new ̄𝑢 is chosen: how often ̄𝑢 is expected to28

be changed depends on the size of the available plaintext/ciphertext pairs pool. This permits29

a tradeoff between memory and running time.30
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An example of a cipher that can be easily broken by splice-and-cut (both CPA and KPA) attacks1

is MAGENTA: (cf. Subsection 3.19.6 on page 181). In fact, the attacks described in [BBF+99] are2

nothing but splice-and-cut attacks ante litteram, as they predate the Aoki and Sasaki description3

in the case of single encryption.4

Recently Itai Dinur et al. [DDKS13a] showed that splice-and-cut techniques can be performed5

as known plaintext attacks also in the single encryption scenario. They demonstrated this on6

step reduced LED-64 – their attack (the first known plaintext attack on LED-64) is a differential7

MITM attack, a fact that is noteworthy on its own.8

Partial matching and overlapping key bit sets (Subsection 2.4.3 on page 100) can be combined9

with the splice-and-cut technique in a straightforward way.10

2.4.5 Bicliques11

Bicliques are a recent cryptanalytic tool [KRS12]. They can be used when there is a part of the12

cipher that cannot be separated in a useful way into two sections that depend only on distinct13

sets of key bits. They are a formalisation of the “initial structure” technique introduced by14

Kazumaro Aoki and Yu Sasaki in [AS09].15

2.4.5.1 Definition16

A biclique is a pair of sets of internal states, which are (usually) constructed either in the first17

or in the last rounds of a cipher, and mapped between each other by specifically chosen keys.18

Let 𝐸 be a cipher and 𝑓 be a subcipher of 𝐸, i.e. there are two ciphers 𝐸1 and 𝐸2 such that19

𝐸 = 𝐸2 ∘ 𝑓 ∘ 𝐸1. A biclique is given by a pair of sets {𝑆𝑖} and {𝑇𝑗}, where the {𝑆𝑖} are inputs to 𝑓20

and {𝑇𝑗} outputs, and a set of keys {𝑁[𝑖, 𝑗]} such that21

𝑆𝑖
𝑁[𝑖,𝑗]

𝑓
𝑇𝑗

and for each pair (𝑖, 𝑗) there is exactly one key𝑁[𝑖, 𝑗] that maps 𝑆𝑖 to 𝑇𝑗. Thus, if we consider the22

{𝑆𝑖} and {𝑇𝑗} as the vertices of a graph, and the 𝑁[𝑖, 𝑗] as edges connecting 𝑆𝑖 to 𝑇𝑗, we obtain a23

complete bipartite graph or biclique.24

If both {𝑆𝑖} and {𝑇𝑗} contain 2𝑑 states, the biclique is said to have dimension 𝑑.25

2.4.5.2 Using Bicliques26

Suppose we can write the cipher 𝐸 as the functional composition of four chunks27

𝐸𝑘1,𝑘2
= 𝐸3

𝑘1
∘ 𝑓𝑘1,𝑘2

∘ 𝐸2
𝑘2

∘ 𝐸1
𝑘1

where the key 𝑘1 of 𝐸1 and 𝐸3 only depends on the bits in 𝒦1 and the key 𝑘2 of 𝐸2 on the bits28

in 𝒦2. For any plaintext/ciphertext pair (𝑃, 𝐶) intermediate values 𝑆, 𝑇, and 𝑣 exist such that29

𝑃 𝑆 𝑇 𝑣 𝐶 .
𝑘1

𝐸1

𝑘1, 𝑘2

𝑓

𝑘2

𝐸2

𝑘1

𝐸3

𝒪

(2.15)
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The goal is to find a collision at 𝑣. The idea here is to treat the “𝑆
𝑘1,𝑘2

𝑓
𝑇” part of (2.15) like1

the “𝑢” in (2.14). Hence, we do not start with just any value 𝑆 or 𝑇, but with the elements in the2

biclique. In other words we compare3

𝑣′
𝑖 = 𝐷3

𝑖 (𝒪(𝐷1
𝑖 (𝑆𝑖))) and 𝑣𝑗 = 𝐸2

𝑗 (𝑇𝑗)

where 𝑆𝑖 and 𝑇𝑗 are biclique vertices connected by 𝑁[𝑖, 𝑗].4

Now, to construct a biclique for all subkeys 𝑖 and 𝑗 on key bit sets𝒦1 and𝒦2 respectively would5

require memory comparable to the whole key space, so this is not a viable attack. Therefore6

the context is necessarily that of relatively small key spaces 𝒦1, 𝒦2, say of dimension 𝑑, where7

the other key bits are fixed for the whole cipher, say, #𝒦3 = #𝒦 − 2𝑑 bits where 𝒦 is the set8

of all key bits and 𝒦3 ∶= 𝒦 ∖ (𝒦1 ∪ 𝒦2). A biclique has to be created for each new choice9

of the bits in 𝒦3 and the cost of the attack is 2#𝒦−2𝑑(𝑐 ⋅ 2𝑑 + 𝐶biclique). Since 𝑐 is about twice10

the cost of a single encryption, it is easy to see that for small values of 𝑑 and without a clever11

way of building bicliques, the attack cannot be faster than brute force, without even taking into12

account the cost of multiple verification of candidates or partial matching.13

A remark about the existence of bicliques is due. The whole cipher can be seen as a biclique of14

dimension #𝒦/2. Also, simple bicliques of dimension zero (i.e. mapping a single state to an-15

other state under a fixed key) always exist. Onemay be naïvely tempted to believe that bicliques16

for any dimension always exist. This is sadly not the case: proving the existence of bicliques17

of useful dimension for all choices of a fixed set of key bits, and actually constructing them, is18

a non trivial task. In the following subsubsection we shall describe two biclique construction19

methods.20

2.4.5.3 Biclique Construction21

There are several approaches to the construction of bicliques. An obvious one can be applied22

where some key bit subsets are used in an alternating fashion in a cipher. For instance suppose23

that the function 𝑓 itself can be written as 𝑓 = 𝑓2 ∘ 𝑓1 where 𝑓1, resp. 𝑓2 is not affected by some of24

the bits in 𝒦1, resp. 𝒦2.25

Then the situation can be roughly described by the following diagram26

𝑃 𝑆 𝑤 𝑇 𝑣 𝐶 , .
𝑘1

𝐸1

𝑘′
2

𝑓 1

𝑘′
1

𝑓 2

𝑘2

𝐸2

𝑘1

𝐸3

𝒪

(2.16)

where 𝑘′
2, resp. 𝑘′

1 is not contained in 𝒦1, resp. 𝒦2, and therefore it can be assumed w.l.o.g. that27

𝑘′
𝑖 is defined on (a subset of) 𝒦𝑖, for 𝑖 = 1, 2. Then a biclique can be constructed with keys28

defined over these key bits.29

By adopting a differential cryptanalysis approach, bicliques can also be constructed from two30

sets of related key differential trails31

{�0
𝛥𝑘

𝑖

𝑓
𝛥𝑖 ∣ ∀𝑖}� and {�∇𝑗

∇𝑘
𝑗

𝑓
0 ∣ ∀𝑗}� .
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A differential in the first set maps input difference 0 to an output difference 𝛥𝑖 under key differ-1

ence 𝛥𝑘
𝑖 , whereas a differential in the second setmaps input difference∇𝑗 to an output difference2

0 under key difference ∇𝑘
𝑗 . Now, suppose that the trails of 𝛥𝑖-differentials do not share active3

nonlinear components (such as active S-boxes in AES) with the trails of ∇𝑗-differentials – then if4

we combine a differential from the first set with a differential of the second set the only effects5

that are combined are combined linearly, hence6

∇𝑗
𝛥𝑘

𝑖 ⊕∇𝑘
𝑗

𝑓
𝛥𝑖

holds for all 𝑖, 𝑗. This is the same principle used in the boomerang attack [Wag99] (cf. Sub-7

section 2.1.6 on page 85), at the root of the concept of the S-box switch [BK09] and sandwich8

attack [DKS10b].9

Finally, if we have two states 𝑆0 and 𝑇0 with a key 𝑁[0, 0] that maps 𝑆0 to 𝑇0, we see that10

following states and keys11

𝑆𝑖 ∶= 𝑆0 + ∇𝑖

𝑇𝑗 ∶= 𝑇0 + 𝛥𝑗

𝑁[𝑖, 𝑗] ∶= 𝑁[0, 0] ⊕ 𝛥𝑘
𝑖 ⊕ ∇𝑘

𝑗

satisfy the biclique property12

𝑆𝑖
𝑁[𝑖,𝑗]

𝑓
𝑇𝑗 .

Essentially all techniques that can be used to construct differential trails can be used to construct13

bicliques, for instance exploiting neutral bits (or neutral variables) [BC04], as used by Dmitry14

Khovratovich, Gaëtan Leurent, and Christian Rechberger [KLR12] to efficiently construct bi-15

cliques for IDEA.16

2.4.6 The Parallel-Cut MITM Attack17

Ivica Nikolic, Lei Wang and Shuang Wu [NWW13b] present an interesting twist on the MITM18

attack idea. Consider an 𝑛 bit cipher19

𝐸 = 𝜌𝑟 ∘ 𝜌𝑟−1 ∘ ⋯ ∘ 𝜌2 ∘ 𝜌1

where, 𝑃 = 𝑃1 is the plaintext, 𝑃𝑖+1 = 𝜌𝑖(𝑃𝑖) and 𝑃𝑟+1 is the ciphertext, and the index 𝑖 denoted20

dependence on the 𝑖-th expanded key 𝑘𝑖 = 𝜓𝑖(𝐾), as usual. Then, each state 𝑃𝑖 is split (possibly21

upon relabeling of the bit indexes) into left and right halves of 𝑛/2 bit each as 𝑃𝑖 = 𝐿𝑖‖𝑅𝑖 and22

the cipher itself is also split in parallel with its encryption path as two subciphers23

𝐸𝑅 = 𝜌𝑅
𝑟 ∘ 𝜌𝑅

𝑟−1 ∘ ⋯ ∘ 𝜌𝑅
2 ∘ 𝜌𝑅

1
𝐸𝐿 = 𝜌𝐿

𝑟 ∘ 𝜌𝐿
𝑟−1 ∘ ⋯ ∘ 𝜌𝐿

2 ∘ 𝜌𝐿
1

that depend on each other as follows:24

𝐿𝑖+1‖𝑅𝑖+1 = 𝜌𝐿
𝑖 (𝐿𝑖, 𝑅𝑖)‖𝜌𝑅

𝑖 (𝐿𝑖, 𝑅𝑖) .
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The key observation here is that if the cipher is such that 𝜌𝐿
𝑖 (𝐿𝑖, 𝑅𝑖) depends on only a very few1

bits of 𝑅𝑖 and 𝜌𝑅
𝑖 (𝐿𝑖, 𝑅𝑖) on only a few bits of 𝐿𝑖, then we can just guess these few bits, just as if2

theywere unknown bits, similarly to the key bits, but in addition to them. Then, for each choice3

of these guessed bits we mount two separate MITM attacks on the ciphers 𝐸𝑅 and 𝐸𝐿 and we4

intersect the resulting candidate key sets. Note that the two attacks can both be accelerated by5

checking if some of the first steps of the two half encryptions match.6

The attack works best when also the bits of the master key are at least partially partitioned7

between the two cipher halves, in other words we can also write 𝐾 = 𝐾𝐿‖𝐾𝑅 and 𝑘𝑖 = 𝑘𝐿
𝑖 ‖𝑘𝑅

𝑖8

where the left halves 𝑘𝐿
𝑖 depend on 𝐾𝐿 and just a few bits of 𝐾𝑅, and the right halves 𝑘𝑅

𝑖 depend9

on 𝐾𝑅 and just a few bits of 𝐾𝐿.10

KLEIN is such a cipher and Nikolic et al. have been able to successfully attack reduced round11

versions of the cipher (cf. Subsection 3.37.1 on page 226 for information about the cipher and12

the attacks).13

Several refinements are described in [NWW13b] as well, such as the use of partial matching14

and time-memory tradeoffs. The main advantage of the attack is the data requirement - it is in15

many cases absolutely minimal, even one or two plaintexts/ciphertext pairs can suffice against16

KLEIN.17

2.4.7 Countermeasures18

To prevent MITM attacks and their variants a good strategy is to make sure that all key bits19

are used “everywhere” in the cipher. Especially for ciphers where the key size is larger than20

the block size, or for Feistel designs, this calls for at least a non trivial key schedule. Note that21

an alternating key schedule may not be sufficient: see Subsection 2.4.5.3 on page 105, and in22

particular the situation depicted in formula (2.16).23

Furthermore, it is clear that good resistance against differential cryptanalysis additionallymakes24

biclique construction difficult “for free.”25

2.5 Weak or Equivalent Keys26

Aweak key for a specific cipher is a key whichmakes the cipher weaker when used. Weak keys27

usually represent a very small fraction of the whole key space, hence the likelihood to use one28

at random is often negligible and it is unlikely that this causes problems.29

However, it is a desirable design goal to have no weak keys. In some contexts weak keys are30

a problem when the adversary has some control over what keys are used, such as when a31

block cipher is used in a mode of operation intended to construct a secure cryptographic hash32

function (e.g. Davies-Meyer).33

It is known that DES has a few weak keys. The design of MARS (Section 3.16 on page 169) had34

a problematic key schedule, with several checks added to avoid weak keys, slowing down the35

cipher considerably in a side channel resistant implementation.36

There is no general rule for designing a cipher without weak keys. The key schedule plays here37

an important role.38

A similar consideration applies to equivalent keys. Some ciphers, such as TEA (Section 3.1239

on page 161) have sets of equivalent keys for each key. This usually only reduces the security40
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minimally when the cipher is used for encryption (in the case of DES the sets of equivalent1

keys are called semi-weak keys), but this becomes a matter for concern if the block cipher is2

used to construct a hash function in a (modified) Davies-Meyer mode, as simple bit changes3

can produce different messages with the same hash.4

Wenote that also certain types of weakness against related-key attacksmaymake a block cipher5

unsuitable to construct a hash function.6

2.6 Related Key and Key Related Attacks7

A related-key attack is any form of cryptanalysis where the attacker can observe the operation8

of a cipher under several different keys whose values are initially unknown, but where some9

mathematical relationship connecting the keys is known to the attacker. For example, the at-10

tacker might know that the last 80 bits of the keys are always the same, even though he doesn’t11

know, at first, what the bits are. This is not an unrealistic model – for instance, the DES com-12

plementation property (Subsection 3.2.2 on page 132)13

𝐸𝐾(𝑃) = 𝐶 ⟺ 𝐸𝐾(𝑃) = 𝐶

(where 𝑥 is the bitwise complement of 𝑥) is a related-key weakness that can speed-up brute14

force attacks by a factor of 2, and NewDES (Subsection 3.3.2 on page 136) possesses a similar15

property that can accelerate attacks by a factor of 28.16

Also, glitches in random number protocols, or weaknesses in protocols can cause related keys17

to happen. On the other hand, in some protocols, the conditions for the desired key relations18

cannot occur – at least not without hardware glitching. The KASUMI block cipher, for instance,19

was broken in 2010 by Orr Dunkelman, Nathan Keller, and Adi Shamir, under a related key20

assumption [DKS10b], but the attack is not effective in the context of 3G protocols.21

The situation is the opposite in the case of the Wired Equivalent Privacy (WEP) protocols for22

WiFi wireless networks. The WEP protocol has a fixed WEP key and its concatenation with a23

24-bit initialization vector is used as the key for the RC4 encryption algorithm (a stream cipher).24

It is essential that the same key never be used twice with a stream cipher, however, the 24-bit25

space for the IV only allows 224 possibilities and by the birthday paradox, it is highly likely that26

for every 4096 packets, two will share the same IV and hence the same RC4 key – at least these27

two packets can thus be attacked. This is not sufficient to recovery the key, but since RC4 has28

vast classes of weak keys, if one of these is found then the RC4 key can be recovered – hence also29

the WEP key itself. Such an attack was publicly shown in 2005 by agents from the U.S. Federal30

Bureau of Investigation.31

2.6.1 Biham’s Sliding Related Key Attack32

Another important class of related key attacks has been discovered by Eli Biham in [Bih93,33

Bih94b], and it is related to the slide attacks described in the next subsection.34

Assume that the cipher 𝐸 is an iterative product cipher, based on a keyed round function 𝑓 = 𝑓𝑘,35

which is susceptible to known plaintext attacks. Suppose also that for a key 𝐾 we can force the36

use of a key 𝐾′ with the property that the key schedule of 𝐾, i.e. (𝑘𝑖)1⩽𝑖⩽𝑟 significantly overlaps37

with the key schedule of �̂�, i.e. ( ̂𝑘𝑖)1⩽𝑖⩽𝑟. For simplicity let us consider the case where 𝑘𝑖+1 = ̂𝑘𝑖38

for 2 ⩽ 𝑖 ⩽ 𝑟 − 1. The situation is depicted in Figure 2.3 on the next page.39
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Figure 2.3: Biham’s “Sliding” Related Key Attack
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Let �̂� = 𝑓𝑘1
(𝑃). Due to the equality between the functions, 𝑃 and �̂� share 𝑟 − 1 rounds of the1

encryption. Thus, ̂𝐶 = 𝑓�̂�𝑟
(𝐶).2

If we have such a pair of plaintext/ciphertext pairs (𝑃, 𝐶) and (�̂�, ̂𝐶), we can exploit the vulner-3

ability of the round function 𝑓 to extract some (partial) information about 𝑘1 and ̂𝑘𝑟.4

If the cipher has 𝑛 bit blocks and keys, we proceed as follows:5

1. Ask for the encryption of 2𝑛/2 plaintexts 𝑃(𝑖) under 𝐾. Let 𝐶(𝑖) = 𝐸𝐾(𝑃(𝑖)).6

2. Ask for the encryption of 2𝑛/2 plaintexts �̂�(𝑗) under �̂�. Let ̂𝐶(𝑗) = 𝐸�̂�(�̂�(𝑗)).7

3. By the birthday paradox there is an index pair (𝑖, 𝑗) such that 𝑃(𝑖) is encrypted under one8

round to �̂�(𝑗), i.e. �̂�(𝑗) = 𝑓𝑘1
(𝑃(𝑖)). From this point forward, the two encryptions evolve to-9

gether.10

4. Hence, we consider all pairs (𝑃(𝑖), 𝐶(𝑖)) and (�̂�(𝑗), ̂𝐶(𝑗)) for all 𝑖, 𝑗 and try to infer 𝑘1 from the11

assumption that �̂�(𝑗) = 𝑓𝑘1
(𝑃(𝑖)) and ̂𝑘𝑟 from the assumption that ̂𝐶(𝑗) = 𝑓�̂�𝑟

(𝐶(𝑖)). By the related-12

key assumption, there will be some some known relation between 𝑘1 and ̂𝑘𝑟: if this is not13

satisfied we try further.14

The attack requires in general 2𝑛 comparisons, but it shall be noted that these involve recovering15

information about the key from the function 𝑓 , twice each time, and not full evaluation of the16

cipher, so these comparisons may be much faster than brute force, albeit by just a small factor.17

If 𝐸 is a two branch balanced Feistel cipher, the right half of 𝑃 is equal to the left half of �̂� and18

the right half of 𝐶 is equal to the left half of ̂𝐶. This dramatically reduces the attack complexity:19

we need only 2𝑛/4 plaintexts 𝑃(𝑖) = (𝐿(𝑖)
0 , 𝐴) and 2𝑛/4 plaintexts �̂�(𝑗) = (𝐴, �̂�(𝑗)

0 ) for a fixed 𝐴. Also,20

the relation between the ciphertext accelerates the fourth step, since we only have to look at the21

pairs (𝑖, 𝑗) for which the right half of 𝐶(𝑖) is equal to the left half of ̂𝐶(𝑗).22

2.6.1.1 Countermeasures23

To counter related-key attacks minimal differences in the key must also be subject to diffusion24

in the cipher. This does not necessarily imply a complex key schedule – but confusion and25

diffusion of the key bits themselves must be ensured by the design. As a rule of thumb, ciphers26

that do not mix the key too often should perform non-trivial key scheduling, but there are27

exceptions, such as LED (Subsection 3.37.4), that always mix the same value, and only every28

four rounds, and have still withstood related-key cryptanalysis.29

Whether to consider related-key attacks depends also on the intended application.30
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2.6.2 Slide Attacks1

David Wagner and Alex Biryukov presented the slide attack in 1999 [BW99], and extended it2

one year later [BW00]. The idea of the slide attack has roots in an IBM Tech Report by Edna3

Grossman and Bryant Tuckerman in 1977 [GT77], later published as [GT78], where a block4

cipher named NewData Seal (NDS) was successfully attacked. The attack exploits weaknesses5

in the key schedule, especially periodicity. For instance, the NDS has identical subkeys in each6

round, i.e. a cyclic key schedule with a cycle length of one.7

The attack also proves that just increasing the number of rounds (whichmakes sense to counter8

differential cryptanalysis) does per se not make a design stronger if one just repeats an already9

weak key schedule: The number of rounds in such a cipher is irrelevant.10

Suppose that the target cipher can be broken down intomultiple rounds of an identical function11

𝑓 = 𝑓𝑘 that is using the same key material 𝑘. The only additional requirements for the attack (in12

its simplest form) to work is that 𝑓 is vulnerable to a known-plaintext attack – in other words13

that from 𝑦 = 𝑓𝑘(𝑥) it is possible to recover some information about 𝑘. The crucial observation14

is that if 𝐸(𝑥) = 𝑓 𝑟(𝑥), then15

�̂� = 𝑓 (𝑃) implies ̂𝐶 = 𝐸(�̂�) = 𝑓 𝑟( 𝑓 (𝑃)) = 𝑓 ( 𝑓 𝑟(𝑃)) = 𝑓 (𝐶) .

We call a pair of plaintext/ciphertext pairs (𝑃, 𝐶) and (�̂�, ̂𝐶) where �̂� = 𝑓 (𝑃) and ̂𝐶 = 𝑓 (𝐶) a slid16

pair. If we represent the process of encrypting 𝑃 and �̂�, where 𝑃𝑖 = 𝑓 𝑖(𝑃) and �̂�𝑖 = 𝑓 𝑖(�̂�), as in17

Figure 2.4, we see that the encryption of �̂� can be paired with the encryption of 𝑃, slid by one18

place, resulting in the same values at the same positions.19

Figure 2.4: A Slid Pair
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Nowwe can describe the attack. We start collecting candidate slid pairs. For any such candidate20

pair (𝑃, 𝐶) and (�̂�, ̂𝐶)we try to recover the key exploiting theweakness of 𝑓 , using both equations21

�̂� = 𝑓𝑘(𝑃) and ̂𝐶 = 𝑓𝑘(𝐶). We recover two (partial) keys: if these do not agree, then the considered22

pair is discarded, otherwise we have a slid pair with high likelihood, and if some key bits are23

still to be determined a brute force attack will complete the attack.24

With 2𝑛/2 plaintext-ciphertext pairs where 𝑛 is the block and key size, one slid pair is expected25

by the birthday paradox. The number of comparisons is however 2𝑛, which is the same as26

the number of encryptions in a brute force attack, but, as in Biham’s related key attack, these27

comparisons are usually faster than encryption operations. Therefore, even though this strategy28

does not automatically lead to attacks significantly better than brute force, it is not uncommon29

that it can show that the actual security level is smaller by at least a small number of bits.30

The probability that the wrong key will correctly encipher two or more messages is very low31

for a good cipher. False positives can be eliminated by using additional plaintext/ciphertext32

pairs.33
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Figure 2.5: Slide Attack on a Feistel Cipher
with a Single Round Key
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Figure 2.6: Slide Attack on a DES-like Cipher
with a Single Round Key
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On the other hand, if the cipher admits equivalent keys, the attack could found one such instead.1

2.6.2.1 Slide Attacks on Feistel Ciphers2

Sometimes the structure of the cipher can greatly reduce the complexity of the attack. The clear-3

est example of this is given by the Feistel cipher using a single round key. The simplifications4

and complexity reduction are the same as in Biham’s “sliding” related key attack.5

Let the block size of the target balanced Feistel be 𝑛 bits. Each of the two branches is 𝑛/2 bits6

wide. Set up the slide attacks as depicted in Figure 2.5. The plaintexts of the two slid encryp-7

tions are of the form 𝐿‖𝐴 and 𝐴‖𝑅′. The attacker chooses 2𝑛/4 different values for 𝐿, encrypting8

the plaintexts 𝐿‖𝐴, and 2𝑛/4 different values for 𝑅′, asking for the encryption of the plaintexts9

𝐴‖𝑅′. Each ciphertext 𝐸(𝐿‖𝐴) = 𝑀‖𝑁 is compared to each 𝐸(𝐴‖𝑅′) = 𝑀′‖𝑁′, and by the slide10

property, if we found a slid pair we must have 𝑁 = 𝑀′, therefore pairs that cannot be candi-11

dates are quickly discarded. Now, the computation of key candidates is very efficient: from12

the first round of the first encryption in the slid pair we have a candidate 𝑘 ?= 𝐹−1(𝐿 ⊕ 𝑅′) ⊕ 𝑅,13

which is compared with the value 𝐹−1(𝑀 ⊕ 𝑁′) ⊕ 𝑁 obtained from the last round of the second14

encryption.15

If the cipher is DES-like, as in Figure 2.6 the round function is different: key mixing occurs16

after an expansion 𝔢 from 32 to 48 bits, and is followed by an SP layer, which we denote here17

by 𝔠 because it compresses its input from 48 bits to 32 bits (cf. Section 3.2 on page 129 and in18

particular Figure 3.3). Therefore there are 216 candidate preimages for, say, 𝔠−1(𝐿 ⊕ 𝑅′), and19
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thus 216 candidate keys 𝔠−1(𝐿 ⊕ 𝑅′) ⊕ 𝔢(𝑅). These are intersected with the set obtained from1

the last round of the second encryption, namely 𝔠−1(𝑀 ⊕ 𝑁′) ⊕ 𝔢(𝑁), and then the remaining2

values are tested.3

2.6.2.2 Countermeasures4

There are essentially three classes of countermeasures to thwart slide attacks (there variably5

effective against attacks on Even-Mansour constructions as well).6

1. The first countermeasure is to use an irregular key schedule. This is crucial if the function7

𝑓 is always the same. Some ciphers include non-linear components in round key derivation,8

in other cases XORing the key (as in PRINCE, cf. Section 3.35 on page 217) or the state (as in9

LED, cf. Subsection 3.37.4 on page 229) with a different constant at each round may suffice.10

2. Design the cipher with heterogeneous rounds. PRINCE, for instance uses three different11

types of rounds (two of are the inverse of each other, and there is a third type in the middle).12

3. If a cyclic key schedule is used, the iterated block 𝑓 should not be vulnerable to known13

plaintext attacks. In Feistel networks, non surjective 𝐹-functions only slowdown the attacker14

by offering more choices for a key. A better approach consists in using bijective multi-round15

SP Networks with additional keying between the SP layers (we note that such F-Functions16

do more than just making the cipher resistant against slide attacks, cf. Subsection 1.8.4 on17

page 54).18

2.6.3 Advanced Slide Attacks19

2.6.3.1 Complementation Slide Attack20

A Feistel-like cipher with two alternating round keys 𝑘0 and 𝑘1 (2K-DES) can be broken by a21

simple slide attack where each two rounds are paired in “super-rounds” that use all the key22

material. For this setting, Wagner and Biryukov [BW00] introduce a more efficient slide attack,23

called the complementation slide attack, represented in Figure 2.7 on the next page.24

Put 𝛥 = 𝑘0 ⊕ 𝑘1, and consider two plaintexts 𝐿‖𝑅 and 𝐿′‖𝑅′ with 𝐿′ = 𝑅 ⊕ 𝛥 and 𝑅′ = 𝐿 ⊕25

𝐹(𝑘0 ⊕ 𝑅) ⊕ 𝛥. It is easy to prove by induction that these two plaintexts will form a slid pair26

with respective ciphertexts 𝐸(𝐿‖𝑅) = 𝑀‖𝑁 and 𝐸(𝐿′‖𝑅′) = 𝑀′‖𝑁′, where 𝑀′ = 𝑁 ⊕ 𝛥 and27

𝑁′ = (𝑀 ⊕ 𝛥) ⊕ 𝐹(𝑘1 ⊕ 𝑁 ⊕ 𝛥) = 𝑀 ⊕ 𝐹(𝑘0 ⊕ 𝑁) ⊕ 𝛥.28

Indeed, suppose that the 𝑖-th state of the encryption of 𝐿‖𝑅 is equal to the (𝑖 − 1)-th state of the29

encryption of 𝐿′‖𝑅′ XORed with 𝛥‖𝛥. Then, by the definition of 𝛥, the input and outputs of the30

𝐹-function at the (𝑖 + 1)-th round of the encryption of 𝐿‖𝑅 are equal to those at the 𝑖-th round31

of the encryption of 𝐿′‖𝑅′. This implies that (𝑖 + 1)-th state of the encryption of 𝐿‖𝑅 is equal to32

the 𝑖-th state of the encryption of 𝐿′‖𝑅′ XORed with 𝛥‖𝛥.33

As a result, 𝐿′ ⊕ 𝑀′ = 𝑅 ⊕ 𝑁 is half-state wide condition on a slid pair, which helps greatly34

reduce the amount of computations. From 𝑀′ = 𝑁 ⊕ 𝛥 we obtain a candidate for 𝛥. If the35

round function 𝐹 is weak enough, we will now be able to derive key candidates 𝑘0 and 𝑘1. The36

work factor of the attack is thus in general very low.37

If applied to a DES variant, the attack must be modified, since the difference in the data words38
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Figure 2.7: Complementation Slide Attack on a Two Keys Feistel Cipher
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is 32 bits, and the subkeys are 48-bit words. In this case 𝛥 = 𝑘0 ⊕ 𝑘1 must be of the form 𝑒(𝛿),1

where 𝑒(⋅) is the DES expansion function and 𝛿 is the actual difference in the half states.2

2.6.3.2 Slide Attack with a Twist3

Another type of slide attack shown in [BW00] is the slide with a twist attack. Consider encryption4

and decryption in a two keys DES like Feistel block cipher as in Figure 2.8 on the following5

page: the decryption is slid by one round with respect to encryption, so that the round keys6

are aligned.7

Two plaintext/ciphertext pairs are considered as before, i.e. plaintexts 𝐿‖𝑅 and 𝐿′‖𝑅′ with re-8

spective ciphertexts 𝐸(𝐿‖𝑅) = 𝑀‖𝑁 and 𝐸(𝐿′‖𝑅′) = 𝑀′‖𝑁′, i.e. 𝐷(𝑀′‖𝑁′) = 𝐿′‖𝑅′ (where, as9

usual, 𝐷 denotes decryption). However we now relate the plaintext of one pair with the ci-10

phertext of the other. If 𝑅 = 𝑁′ and 𝑀′ = 𝐿 ⊕ 𝐹(𝑅 ⊕ 𝑘0), then one sees that 𝑁 = 𝑅′ and11

𝐿′ = 𝑀 ⊕ 𝐹(𝑁 ⊕ 𝑘0).12

Given 232 known plaintexts, it is possible to find a twisted slid pair and recover a round key.13

Since this is a Feistel cipher one can work with the encryption of 216 chosen plaintexts 𝐿‖𝐴 and14

the decryption of 216 chosen ciphertexts 𝑀′‖𝐴. Then, in a slid pair, the right part of 𝐸(𝐿‖𝐴) will15

be equal to the right part of 𝐷(𝑀′‖𝐴).16

One can also combine the two techniques in order to analyze a four round keys Feistel cipher. The17

situation is depicted in Figure 2.9 on page 115. Note that two of the round keys, namely 𝑘0 and18

𝑘2, appear at the same places in both members of the slid encryption/decryption pair, whereas19

the other two, namely 𝑘1 and 𝑘3, always appear facing each other, and the corresponding rounds20
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Figure 2.8: Slide Attack with a Twist on a Two Keys Feistel Cipher

𝐿 𝑅

𝐹
𝑀′ 𝑁′

𝑁′ 𝑀′

𝐹 𝐹

𝐹 𝐹

𝐹 𝐹

𝑀 𝑁
𝑀 𝑁 𝐹

𝐿′ 𝑅′

Encryption

Decryption

𝑘0

𝑘1

𝑘0

𝑘1

𝑘1

𝑘0

𝑘1

𝑘0

have the constant difference 𝛥 = 𝑘1 ⊕𝑘3 in the round subkeys. Therefore, the complementation1

slide technique can be applied, using texts with a slid difference of 0‖𝛥.2

2.6.4 Saarinen’s Chosen Key Recovery of Secret GOST S-boxes3

One distinctive feature of the GOST block cipher (Section 3.4 on page 140) is that the S-boxes4

can be kept secret and be varied from application to application. The cipher uses eight 4-bit5

S-boxes, which can be chosen freely but must be the same for each round. They they contain6

about 354 (log2((16!)8)) bits of secret information, so one may be tempted to believe that the7

effective key size could, in theory, be increased to 610 bits.8

In 1998 Markku-Juhani Saarinen [Saa98b] showed how to recover the contents of the S-boxes9

in approximately 232 encryptions with chosen keys. Saarinen’s attack is interesting since it is10

probably the first instances of a slide attack (cf. Subsection 2.6.2 on page 110) after theGrossman-11

Tuckerman 1977 attack onNDS [GT77,GT78]. It predates evenDavidWagner andAlex Biryukov’s12

1999 and 2000 papers [BW99, BW00].13

Let 𝐹(𝑅, 𝑘) be the GOST F-Function, as depicted in Figure 3.7 on page 141. It is a 32-bit to 32-bit14

function, and it consists of an addition modulo 232 with a 32-bit round key, the substitution15

layer consisting of the aforementioned eight 4-bit S-boxes, and a cyclic left rotation by 11 bits.16

Saarinen’s attack is based on the slid property of Feistel ciphers with constant key schedule,17

so the F-Function is 𝐹(𝑥) = 𝐹(𝑥, 𝑘) with 𝑘 fixed. If encrypting 𝑃1 = 𝑦‖𝑥 produces a ciphertext18

𝐶1 = 𝑏‖𝑎 if 𝐹(𝑥) = 𝑦, then encrypting 𝑃2 = 𝑥‖0 will produce a ciphertext of the form 𝐶2 = 𝑎‖𝑐.19

i.e. the right half of 𝐶1 is the same as the left half of 𝐶2. Saarinen calls this the “lifting” property,20

and it is in fact a slid pair property where the second encryption is slid “up” one round.21
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Figure 2.9: Complementation Slide With a Twist Attack on a Four Keys Feistel Cipher
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The attack then proceeds in two steps. The first step searches for a 32-bit “zero vector” 𝑧 = 𝐹(0),1

and it requires at most 232 encryptions. The second step examines one S-box at the time and2

extracts the contents of that S-box, at the cost of at most 211 encryptions.3

In the first step the attacks sets the key to 0. As a result the round keys are all 0. Let 𝑎 be the right4

half the encryption of the zero block 0‖0. Then, loop over the plaintexts 𝑧‖0 until a ciphertext5

is found whose left half is equal to 𝑎. There is a high probability that this 𝑧 is the zero vector6

𝑧 = 𝐹(0). We can now move to the second step with this value of 𝑧: If that step fails, we will7

resume the search for the zero vector starting with 𝑧 + 1; the zero vector is always found within8

232 encryptions.9

In the second step we start by encrypting 𝑎‖0. Let 𝑥 be right half of the ciphertext. If 𝐹(𝑎) = 𝑏,10

then the left half of the encryption of 𝑏‖𝑎 will be 𝑥. To test whether 𝑆𝑖(𝑢) = 𝑣, one can thus set11

𝑎 = 𝑢 ≪ 4𝑖
𝑏 = (�𝑧 ∧ 11112 ⋘ 4𝑖 + 11)� ∨ (𝑣 ⋘ 4𝑖 + 11)

and verify whether the left half of the encryption of 𝑏‖𝑎 is indeed 𝑥. We see that 𝑎 is constructed12
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by shifting the 4 bits of the value 𝑢 so that they are fed into the 𝑖th box 𝑆𝑖, and 𝑏 is obtained from1

𝑧 by replacing the guessed 𝑢 = 𝑆𝑖(𝑣) in the corresponding output bits. Then, assuming 𝐹(0) = 𝑧,2

it is 𝐹(𝑎) = 𝑏. Since there are eight 4-bit S-boxes, a naive trial and error algorithmwill determine3

the contents of all S-boxes in no more than 8 × 24 × 24 = 211 encryptions – if 𝑧 is correct. If the4

resulting S-boxes are not permutations of [0..15] or are otherwise wrong (one can just check on5

some known plaintext/ciphertext pairs), the search for the right 𝑧 resumes.6

2.6.5 Generalised Even-Mansour Schemes7

Generalisations of the Even-Mansour scheme with more key mixing rounds alternated with8

arbitrary permutation layers, as depicted in Figure 2.10, have been extensively analysed. Even9

though Even-Mansour schemes per se are not used to design a cipher, mostly for performance10

reasons, they are very useful as tools in cryptanalysis and as tools for block cipher designers.11

They can be used to approximate the design of traditional iterated or product ciphers, isolating12

and abstracting some of their aspects and allowing the cryptanalyst to draw design principles,13

mostly in the form of choices to avoid. Dozens of papers devoted to the cryptanalysis of EM14

schemes have been published since 2011 at important cryptography conferences.15

Figure 2.10: General Even-Mansour Scheme
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𝐾1 𝐾2 𝐾3 𝐾𝑟 𝐾𝑟+1

The attacks on EM schemes that we shall present are related to slide attacks, the simplest case16

being that of a multi-round EM scheme with a single key.17

In this subsection, 𝑛 is the bit size of the plaintext, state and keys, and 𝑁 = 2𝑛. 𝑇 and 𝑆 denote18

the time complexity and storage of the attacks.19

2.6.5.1 Sliding with a Twist on Even-Mansour Schemes20

One may be tempted think that key whitening (i.e. the FX construction) would effectively func-21

tion as a “barrier” against slide attacks, similarly to its function against linear and differential22

cryptanalysis. However, a crucial observation in [BW00] is that the slide with a twist technique23

can be used to “penetrate” one level of key whitening and therefore mount attacks, say, on24

DESX, that work more efficiently than differential cryptanalysis. Their example is a slide at-25

tack with a twist on DESX (Subsection 3.2.9 on page 134), that is in fact more general, and we26

shall first describe it in the context of Even-Mansour schemes.27

Let 𝐹(𝑥) denote any random permutation. We define an Even-Mansour encryption scheme28

under the key 𝐾 = ⟨𝐾1, 𝐾2⟩ as 𝑃 𝐸𝑀𝐹
𝐾1,𝐾2

(𝑃) = 𝐾2 ⊕ 𝐹(𝑃 ⊕ 𝐾1). Now consider an EM-29

encryption and a EM-decryption, with the latter slid up as depicted in Figure 2.11 on the next30

page.31

We say that the two known plaintext pairs (𝑃, 𝐶) and (𝑃′, 𝐶′) form a (twisted) slid pair if they32

satisfy 𝑃 ⊕ 𝑃′ = 𝐾1. Consequently, for any slid pair, we will have33

𝐶′ = 𝐾2 ⊕ 𝐹(𝑃′ ⊕ 𝐾1) = 𝐾2 ⊕ 𝐸(𝑃) as well as 𝐶 = 𝐾2 ⊕ 𝐹(𝑃′) .
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Figure 2.11: Slide With a Twist Attack on an Even-Mansour Scheme
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Combining these two relations yields 𝐾2 = 𝐶 ⊕ 𝐹(𝑃) = 𝐶′ ⊕ 𝐹(𝑃), and we see that slid pairs1

must satisfy the sliding relation2

𝐶 ⊕ 𝐹(𝑃) = 𝐶′ ⊕ 𝐹(𝑃′) (2.17)

(or, equivalently, 𝐶⊕𝐶′ = 𝐹(𝑃)⊕𝐹(𝑃′)). To find a single slid pair, we then collect enough known3

plaintext/ciphertext pairs (𝑃𝑖, 𝐶𝑖) in a table until the birthday paradox conditions are satisfied,4

and search for two of these that satisfy the sliding relation. This is optimised by creating a table5

of pairs [𝐶𝑖 ⊕ 𝐹(𝑃𝑖), 𝑖] that is hashed or sorted sorted or hashed according to the first value and6

where 𝑖 is the index of the corresponding plaintext/ciphertext pair. Once a collision between7

the first entries is found, the corresponding plaintext/ciphertext pairs (𝑃𝑖, 𝐶𝑖) are immediately8

retrieved. Each candidate slid pair will immediately suggest values for 𝐾1 and 𝐾2 to be tested9

on a few additional texts.10

In general, for 𝑛 bits states and keys, the attack requires 𝑆 = 2𝑛/2 known plaintexts and 𝑇 = 2𝑛/211

additional queries to the encryption function to find a slid pair (here 𝑆 and 𝑇 mean space and12

time as in the discussion about space-time tradeoffs, cf. Subsection 2.4.2 on page 98).13

If the function 𝐹(𝑥) is instead a keyed permutation 𝐹(𝑥) = 𝐸𝐾(𝑥) with unknown key 𝐾, then the14

the plaintext/ciphertext pairs are still collected once, but the [𝐶𝑖 ⊕𝐸𝐾(𝑃𝑖), 𝑖]must be created for15

each 𝐾. Applied to DESX, this results in an attack using 232.5 known plaintext/ciphertext pairs,16

232.5 additional space, and time 287.5 DES decryptions (not 288.5 because of the DES comple-17

mentation property). This attack can be modified into a ciphertext only attack with complexity18

295 (for instance, if we know enough statistical properties of the plaintext).19

Alex Biryukov and David Wagner remark that “the attack may be described without reference to20

sliding, but the sliding with a twist methodology made it possible to find the attack in the first place.”21

The attack is nowadays usually depicted in the form given in Figure 2.12 on the next page, to22

better compare it to more recent improvements.23
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Figure 2.12: Slide With a Twist Attack on an
Even-Mansour Scheme, Refactored
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Figure 2.13: The SlideX Attack on an Even-
Mansour Scheme
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2.6.5.2 The SlideX Attack1

The slide with a twist attack to an EM scheme does not lend itself to space-memory tradeoffs.2

But, sometimes we can only collect 𝑆 < 2𝑛/2 texts. This case is addressed by the SlideX attack,3

introduced by Orr Dunkelman, Nathan Keller and Adi Shamir in [DKS12]. Consider the situa-4

tion depicted in Figure 2.13, and let 𝑃 and 𝑃′ be two distinct plaintexts with the property that5

6

𝑃′ = 𝑃 ⊕ 𝐾1 ⊕ 𝛥 . (2.18)

Then7
𝐶′ = 𝐸𝑀𝐹

𝐾1,𝐾2
(𝑃) = 𝐹(𝑃 ⊕ 𝐾1) ⊕ 𝐾2 = 𝐹(𝑃′ ⊕ 𝛥) ⊕ 𝐾2 and

𝐶 = 𝐸𝑀𝐹
𝐾1,𝐾2

(𝑃′) = 𝐹(𝑃′ ⊕ 𝐾1) ⊕ 𝐾2 = 𝐹(𝑃 ⊕ 𝛥) ⊕ 𝐾2 .
(2.19)

Hence,8

𝐶 ⊕ 𝐹(𝑃 ⊕ 𝛥) = 𝐶′ ⊕ 𝐹(𝑃′ ⊕ 𝛥) . (2.20)

In light of this, we define a SlideX pair as a pair which satisfies the SlideX relation (2.18), and9

thus also (2.20).10

To check for SlideX pairs, we take 𝑆 plaintext/ciphertext pairs (𝑃𝑖, 𝐶𝑖), and for each guess of 𝛥,11

we construct a table of all values 𝐶𝑖 ⊕ 𝐹(𝑃𝑖 ⊕ 𝛥). Then 𝑂(𝑆2) pairs are checked for the SlideX12

relation – for each match, candidate keys 𝐾1 and 𝐾2 are obtained at once from (2.18) and (2.19)13

respectively. The construction of the table is repeated 𝑂(2𝑛/𝑆2) times, each time with 𝑆 calls to14

𝐹, whence 𝑇 = 𝑂(2𝑛/𝑆). This matches the information-theoretic security lower bound under15

the assumption that 𝐹 is a random permutation.16

2.6.5.3 Further Analysis of Even-Mansour Constructions17

Multi-round Even-Mansour constructions have attracted considerable interest since the devel-18

opment of ciphers such as LED (Subsection 3.37.4 on page 229) that consist of relatively simple19

key scheduling (constant or alternating) and heterogeneous functions (usually derived from20

the same function but with different constants mixed in at each step). This suggests to study21

the security of such a cipher modeled as an iterated EM scheme, taking into account only the22

key schedule of the cipher and not the properties of the specific internal permutations.23
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Figure 2.14: Single Round Even-Mansour Scheme With One Key
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Figure 2.15: Two Rounds Even-Mansour Scheme With One Key
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2.6.5.3.1 One-Round Single-Key Even-Mansour Constructions1

One-round, single-key EM schemes, as in Figure 2.14, can be attacked by a simplified variation2

of the SlideX attack: if 𝑃𝑖 + 𝐾 = 𝑋𝑖 and 𝐶𝑖 + 𝐾 = 𝑌𝑖, then 𝑃𝑖 + 𝐶𝑖 = 𝑋𝑖 + 𝑌𝑖. For each known text3

(𝑃𝑖, 𝐶𝑖) we calculate 𝑃𝑖 + 𝐶𝑖 and store it in a table along with 𝑃𝑖. Then, for random values 𝑋𝑗 we4

calculate 𝑌𝑗 = 𝐹(𝑋𝑗) and search 𝑋𝑗 + 𝑌𝑗 in the table. For each match, we test the candidate key5

𝐾 = 𝑃𝑖 + 𝑋𝑗. If we collect 𝑆 texts, a match is expected in time 𝑇 = 2𝑛/𝑆. Assuming 𝑆 ⩽ 2𝑛/2, the6

time complexity of the attack is 𝑚𝑎𝑥(𝑇, 𝑆) = 𝑇.7

2.6.5.3.2 Two-Round Single-Key Even-Mansour Constructions8

At FSE 2013 Ivica Nikolic, Lei Wang and ShuangWu [NWW13a] proved that even 2-Round EM9

constructions with one key do not provide 𝑛-bit security. We describe here a variant due to Itai10

Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir [DDKS13b, DDKS13c]. The setting of11

the attack is depicted in Figure 2.15.12

The preprocessing phase consists in evaluating 𝐹1 on 𝑆 = 𝜆2𝑛 arbitrary inputs 𝑋, where 𝜆 ⩽ 1,13

and find 𝑡-way collisions on 𝐹′
1(𝑋) ∶= 𝑋 ⊕ 𝐹1(𝑋). Such a 𝑡-way collision is a 𝑡-uple of values14

𝑋1, 𝑋2, … , 𝑋𝑡 such that𝑋𝑖⊕𝐹1(𝑋𝑖) are all equal to a single value by 𝛥. Note that 𝑃𝑖⊕𝑉𝑖 = 𝑋𝑖⊕𝑌𝑖,15

and thus for an arbitrary 𝑃𝑖, we have 𝑃𝑖 ⊕ 𝑉𝑖 = 𝛥 with probability 𝑡/2𝑛 > 1/2𝑛.16

In the online stage, for each (𝑃𝑖, 𝐶𝑖) assume that 𝑉𝑖 = 𝑃𝑖 ⊕ 𝛥 and compute 𝑊𝑖 = 𝐹2(𝑉𝑖). From17

this we obtain a suggestion 𝐾 = 𝑊𝑖 ⊕ 𝐶𝑖, which we test.18

The preprocessing time complexity is 𝜆2𝑛 – and this is also the amount of precomputed data.19

The online time complexity is also 2𝑛/𝑡. The total time complexity is therefore 𝜆2𝑛 + 2𝑛/𝑡, but20

we do not have determined 𝜆 and 𝑡 yet. To calculate the optimal time complexity, we need21

to understand the tradeoff between these two parameters, i.e. establish how 𝑡-way collisions22

behave when evaluating a fraction 𝜆 of inputs for 𝐹′
1.23

Assuming 𝐹1 is a randompermutation, we can assume that 𝐹′
1 is very close to a random function24

mapping 𝑛 bits to 𝑛 bits. The in-degree of a vertex (i.e. the number of preimages) in the range25
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of 𝐹′
1 can therefore be assumed to follow a Poisson distribution, i.e. there are1

2𝑛𝜆𝑡𝑒−𝜆

𝑡! (2.21)

values which have in-degree 𝑡. The tradeoff between 𝜆 and 𝑡 is subject to the additional condi-2

tion (2𝑛𝜆𝑡𝑒−𝜆)/(𝑡!) ⩾ 1 and taking 𝜆 ≈ 1/𝑛 gives 𝑡 ≈ 1/𝜆 ≈ 𝑛 and this minimizes 𝑇 ≈ 2𝑛/𝑛. This3

is faster than exhaustive search by a factor of about 𝑛.4

For 𝑛 = 64 we have that 𝑇 and 𝑆 are ≈ 260. However, equation (2.21) shows that the number5

of 𝑡-way collision increases sharply when 𝑡 decreases. For instance, if 𝑛 = 64, with 260 inputs6

the number of expected 10-way collisions is 4, that of 9-way collisions is 95, and that of 8-way7

collisions exceeds 100, 000. Using 8-way collisions the time total complexity grows marginally8

but the online data processing decreases to 245. This is the complexity of an attack to two round9

LED-64 as well.10

2.6.5.3.3 More Even-Mansour Constructions11

Three round EM does not provide 𝑛-bit security as well. Further developing the ideas of the12

attack against the two round version, in [DDKS13b, DDKS13c] Itai Dinur, Orr Dunkelman,13

Nathan Keller and Adi Shamir show how to obtain an attack that is faster than brute force14

by a factor 𝑛 as in the two round case. In the case of three round reduced LED-64 this leads15

to an attack that requires total time 260, storage for precomputations of 260 values, working on16

249 known texts.17

Now consider a eight round two alternating key Even-Mansour construction. If we guess the18

first key 𝐾1, this fixes also three internal mixings of this key besides the two outer ones. There-19

fore we are left with a 3 round single key (𝐾2) Even-Mansour construction that is attacked as20

just mentioned.21

Eight round LED-128 is then amenable to an attack that requires total time 2124, storage for 26022

precomputations, processing 249 known texts.23

Four-round EM constructions with two alternating keys are analysed as well, the result being24

that using 𝑆 memory they can be defeated with total time 𝑇 = 22𝑛/𝑆 as long as 𝑇 ⩾ 2𝑛, hence25

the effective security level is 2𝑛. Hence, four round LED-128 offers only 64 bits of security.26

The most remarkable lesson is that an alternating key schedule does not necessarily offer secu-27

rity better than 𝑛-bits unless the number of rounds exceeds 8, but the storage and time require-28

ments still make the attacks unfeasible.29

In [DKS12] additional variants of the SlideX attack on EM constructions are considered. Modu-30

lar addition is considered as an alternative to XOR, and essentially all attacks carry over. Also,31

the influence of involutory rounds is considered. A single round EM scheme with two keys32

𝐾1 and 𝐾2 where the round is an involution can be attacked by a variant of SlideX called the33

mirror slide revealing 𝐾1 ⊕ 𝐾2 with 2𝑛/2 queries to the encryption oracle and no queries to the34

involutory function.35

In [DDKS13d] (the full version of [DDKS13b, DDKS13c]) serious consequences of the use of36

involutions in EM schemes are presented. A random involution 𝐹 on a 𝑛-bits space has an37
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expected number of approximately 2𝑛/2 fixed points1 and therefore the vertex 0 in the graph1

of the function 𝐹′(𝑥) = 𝑥 ⊕ 𝐹(𝑥) has an expected in-degree of 2𝑛/2. This is much larger than2

the 𝑡 = 𝑂(𝑛) in-degree for a random permutation and applied to two, resp. three round EM3

schemes it permits to drop the time complexity from 𝑇 = 2𝑛/𝑡 to 𝑇 = 2𝑛/2, resp. 𝑇 = 23𝑛/4, if4

just one (any one) of the permutations is an involution. This leads to the paradox that if we add5

an involution to a two round EM construction the cipher becomes weaker.6

2.7 Statistical Analysis7

Statistical analysis is one of the oldest cryptanalytic techniques, used to breakmany simple sub-8

stitution ciphers. In the context ofmodern block ciphers statistical analysis is a generalisation of9

linear analysis – no inhomogeneity should be present in the output of a block cipher regardless10

of statistical properties of the plaintext – the output should always look like a pseudorandom11

sequence. Even recently proposed ciphers – such as Madryga (Subsection 3.3.1 on page 135) –12

succumbed to ciphertext only attacks based on statistical assumptions on the plaintext.13

Pascal Junod extensively studied this line of research in his PhD research [Jun01a, Jun01b,14

Jun03a, Jun03b], and applied it to the design of FOX [JV04a]. FOX is also one of the very few15

ciphers that follows the Lai-Massey design (cf. Section 1.5 on page 37).16

Any component in a new cipher design should be tested against any deviations from perfect ho-17

mogeneity: The whole arsenal of statistical methods used to analyze PRNGs (pseudo-random18

number generators) can be deployed.19

2.7.1 The Davies-Murphy Attack20

The Davies and Murphy Attack – sometimes known just as Davies’ attack [sic] – is a statistical21

cryptanalysis technique originally devised to attack the DES (Section 3.2 on page 129). It is22

known-plaintext attack. It was originally created in 1987 byDonald Davies and published eight23

years later in a joint paper with Sean Murphy [DM95]. The technique was improved in 1994 by24

Eli Biham and Alex Biryukov [BB97]. Davies’ attack, at least in theory, can be adapted to other25

Feistel ciphers besides DES.26

The S-boxes of the DES are balanced, i.e. when the input to any DES S-box is uniformly dis-27

tributed, then the output is uniformly distributed as well. However, the expansion 𝑒(⋅) in the28

𝐹-function of DES generates correlations between the output bits of adjacent S-boxes, when a29

fixed key is used. In fact, two adjacent S-boxes have an input size of 12 bits; 12 bits of the round30

key but only 10 bits of the expanded state, say 𝛼, are combined to be used as the input to the two31

S-boxes. Two bits of 𝛼 are duplicated and the two instances of each of these bits are XORedwith32

two different key bits, and then go into the two S-boxes. This is what causes non-uniformity in33

the output of the two S-boxes (and this applies to triples of S-boxes as well) and also makes the34

correlation dependent on the key. The situation is depicted in Figure 2.16 on the next page.35

1Let 𝑎𝑚 be the number of involutions over [𝑚]. Fix an element 𝑥 ∈ [𝑚]. For any one of the 𝑎𝑚 involutions on
[𝑚], 𝑥 is a fixed point if and only the permutation it induces on [𝑚] ∖ {𝑥}, i.e. a permutation on 𝑚 − 1 elements,
is involutory itself, and there are 𝑎𝑚−1 such. This holds for each 𝑥, thus the expected number of fixed points of an
involution over [𝑚] is≈ 𝑚⋅𝑎𝑚−1/𝑎𝑚. From [FS09, Example VIII.9, page 583] we know that 𝑎𝑚 ≈ √𝑚!𝑒√𝑚(8𝜋𝑒𝑚)−1/4,
from which we get that the desired number of fixed points is asymptotically √𝑚 − 1/2 + 𝑜(1). Now put 𝑚 = 2𝑛. An
exact formula is given by Lemma 2.6 in [YTH96], which confirms that the asymptotic formula gives good results
already for 𝑛 = 8.
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Figure 2.16: Relation Between Adjacent S-boxes of the DES (as in Figure 3.3 on page 131)

𝑆1 𝑆2

key bits

However, non-uniformities must be observed at a higher level in the cipher, since the outputs1

of individual S-boxes cannot be observed when all we have is an encryption oracle.2

The attacks this also makes use of the following observation. With respect to Figure 3.2 on3

page 130, we have 𝐹(𝑅𝑖, 𝑘𝑖) = 𝐿𝑖 ⊕ 𝑅𝑖+1 Hence, if 𝑖 < 𝑟, we have:4

𝐹(𝑅𝑖, 𝑘𝑖) = 𝐿𝑖 ⊕ 𝐿𝑖+2 . (2.22)

This remark is true for each round except the last one (where 𝑖 + 2 has no sense).5

Now, ignoring the initial and final permutation, let 𝐿‖𝑅 = 𝐿1‖𝑅1 and 𝐿′‖𝑅′ = 𝑅𝑟+1‖𝐿𝑟+1 be the6

plaintext and ciphertext, respectively. If we take the XOR of the equations (2.22) for all even 𝑖,7

we obtain the following relation:8

𝑅 ⊕ 𝐿′ =
𝑟/2
⨁
𝑗=1

𝐹(𝑅2𝑗, 𝐿2𝑗) .

If we XOR the odd rounds, we obtain instead:9

𝑅′ ⊕ 𝐿 =
𝑟/2
⨁
𝑖=1

𝐹(𝑅2𝑖−1, 𝐿2𝑖−1) .

Each plaintext/ciphertext pair thus gives the XOR of the outputs of the F-Functions of the even10

rounds, as well as the corresponding sum for the odd rounds. That is what allows the attacker11

to observe a non-uniform distribution of the outputs of the F-Functions (induced by the non-12

uniformity of S-box pairs) by analysing a large quantity of plaintext/ciphertext pairs.13

The attack starts by calculating the empirical distribution of certain characteristics based on14

many known plaintext/ciphertext pairs. Bits of the key can thus be deduced given sufficiently15

many known plaintexts by correlating the outputs with the inferred distributions. Davies’ orig-16

inal attack allowed to find 2 parity bits requiring 256.6 known plaintexts, and finding 16 parity17

bits requires 285.6 known plaintexts. Thus, in his original form, the attack is slower than ex-18

haustive search.19

Eli Biham and Alex Biryukov’s improvements permit to mount attacks faster than brute force.20

These consist in: considering different pairs of S-boxes than Davies; splitting the attack in a21

known plaintext collection phase and an online analysis phase; and describing tradeoffs be-22

tween the number of plaintexts, the success rate and the time of analysis. One tradeoff requires23

250 known plaintexts and 250 steps of analysis with a 51% success rate to break the full DES. A24

different attack can find 24 bits of the key with 252 known plaintexts with 53% success rate, us-25

ing only 217 DES encryptions and 231 further elementary machine instructions in the analysis26
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phase. Suggestions how to design S-boxes immune to these attacks are also given in [BB97].1

In 1998, Thomas Pornin [Por98] developed techniques for analyzing andmaximizing a cipher’s2

resistance to this kind of cryptanalysis.3

Sébastien Kunz-Jacques and Frédéric Muller [KM05] further reduced the complexity of the4

Biham-Biryukov variant to 245 chosen plaintexts and study the relation of the Davies-Murphy5

attack to linear cryptanalysis.6

2.8 Algebraic Methods7

2.8.1 Interpolation Attacks8

Interpolation attacks can are the first algebraic attacks on block ciphers. The underlying in-9

tuition of this attack is that the relationship between plaintext and ciphertext can always be10

expressed as a set of polynomial expressions. If these have sufficiently low degrees, an attacker11

can reconstruct them from known (or chosen) plaintexts and the corresponding ciphertexts.12

Then, he can encrypt any plaintext of his choice without knowing the secret key.13

Thomas Jakobsen and Lars Knudsen first presented this attack in [JK97], where it was shown14

that S-boxes represented by functions of low degree, even if provably secure against linear and15

differential attacks, could fall to interpolation attacks. The name of the attack comes from the16

fact that the Lagrange interpolation formula is used to determine the interpolating polynomials17

once a sufficient number of plaintext/ciphertext pairs have been computed.18

Tomakemattersworse, shortly thereafterAmrYoussef andGuangGong [YG00] showed that in-19

terpolation attacks are possible even when using monomial S-boxes (i.e. S-boxes representable20

by a power function over a finite field) regardless of their degree. This observation is useful for21

attacking ciphers using simple algebraic functions (in particular quadratic functions) as S-boxes.22

Also, ciphers of low non-linear order are vulnerable to higher order differential attacks.23

Jakobsen andKnudsen give upper bounds on the number of required pairs for known-plaintext24

interpolation attacks to succeed for selected examples. This number is exponential in the de-25

gree of the polynomial function describing the S-box(es), the number of rounds and the size of26

internal state. This means that in general interpolation attacks are difficult to mount, because27

the ciphers must be quite special, and computing the polynomials may become prohibitively28

expensive.29

2.8.2 Algebraic Attacks30

Algebraic attacks break a cipher by representing it a set of polynomial functions of its inputs,31

then substituting in known data for some of the variables and solving the resultingmultivariate32

system of polynomial equations for the key.33

Nicolas Courtois, Alexander Klimov, Jacques Patarin, Adi Shamir presented the framework34

of these attacks at Eurocrypt 2000 [CKPS00]. The “XL algorithm” (eXtended Linearisation) –35

an improvement on Aviad Kipnis and Adi Shamir’s relinearisation method [KS99] – is their36

method for solving these systems.37

Courtois applied the XL algorithm initially to stream ciphers [Cou03, CM03]. Later, he and38

Josef Pieprzyk [CP02a] observed that Rijndael (and, partially, also Serpent) could be expressed39
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as a system of quadratic equations, and thus adapted XL to this setting. This attack has been1

described also in the case of the DES [CB06, CB07], leading to a 6 round key recovery attack2

and a 12 round plaintext recovery attack.3

There is more than one method can be used for solving multivariate systems of polynomial4

equations. Gröbner bases algorithms can be used, and the XL algorithm is sometimes pro-5

posed as an alternative to, but in fact XL is just an inefficient Gröbner basis algorithm in dis-6

guise [AFI+04]. Othermethods include resultant-basedmethods, SAT solvers (for instance [ES])7

and a method by Håvard Raddum and Igor Semaev [RS06].8

The underlying algebraic structure can be chosen by the attacker: against one cipher he might9

treat the text as a vector of bits and use Boolean algebra while for another he might choose to10

treat it as a vector of bytes and use arithmetic modulo 28, and for yet another cipher nibbles11

may be interpreted as elements of 𝔽24 , or even as non-zero elements of 𝔽17.12

The actual effectiveness of algebraic attacks is debated, often with heated tones. The following13

quote is one of the polite responses:14

I believe that the Courtois-Pieprzyk work is flawed. They overcount the number of linearly15

independent equations. The result is that they do not in fact have enough linear equations16

to solve the system, and the method does not break Rijndael.17

Don Coppersmith, 200218

At the AES 4 Conference, Bonn 2004, one of the inventors of Rijndael, Vincent Rijmen, com-19

mented, “The XSL attack is not an attack. It is a dream.” Promptly Courtois answered, “It will20

become your nightmare.” The attack has not become a nightmare yet, but it has caused some21

experts to express greater unease at the algebraic simplicity of the current AES.22

However, its possibility can not be excluded a priori during the design of a new cipher.23

The most significant successful algebraic attack so far is Nicolas Courtois, Gregory Bard and24

David Wagner’s cryptanalysis of the block cipher KeeLoq, an NLFSR-based block cipher used25

in the automotive industry with a 32-bit state and 64-bit keys [CBW08]. Using a combination26

of slide attacks and SAT (boolean satisfiability problem) solvers, they were able to successfully27

attack this cipher.28

2.8.3 Gröbner Basis Attacks29

Johannes Buchmann, Andrei Pyshkin and Ralf-PhilippWeinmann [BPW06] use Gröbner bases30

to implement algebraic attacks leading to key recovery. They first step in their attack is to write31

down polynomials {𝑝𝑖} that fully describe the cipher – these are Boolean functions on the key32

and plaintext bits. Then, a plaintext/ciphertext pair are used to create additional linear equa-33

tions {𝑔𝑖} and the variety defined by the union set {𝑝𝑖} ∪ {𝑔𝑖} (called the key recovery ideal)34

is computed by Gröbner basis computations. This set of points represents, in fact, a list of key35

candidates, which is then sieved using further plaintext/ciphertext pairs, as usual.36

The bulk of the complexity is in the Gröbner basis computations, in particular the computation37

of the variety (that amounts to solving the system) and in the creation of the Gröbner bases38

themselves and their conversion. For this purposes, the FLGM algorithm is used [FGLM93] as39

well as the Gröbner walk [CKM97].40

124



2.9. A REMARK ON THE REBOUND ATTACK

The attack has been demonstrated on toy ciphers Flurry and Curry – these ciphers are however1

not trivial, since they show proven good resistance against differential and linear attacks.2

2.8.4 Countermeasures3

Despite the fact that no algebraic attack has successfully broken ciphers that have withstood4

intense cryptanalysis of other types – for instance the 2101 time complexity attacks on AES-2565

are not taken seriously by part of the cryptographic community – it would be unwise to ignore6

the possibility and do not take at least some simple precautions. For instance, if the S-boxes do7

not have high degree, the cipher may be easily defeated by algebraic attacks as it happened for8

some toy ciphers.9

Indeed, all forms of algebraic attacks can be made impractical when the system of equations10

and their degrees can bemade sufficiently large. Cipher designers therefore strive tomake their11

ciphers highly nonlinear. This is achieved not only bymaking the non-linear components, such12

as S-boxes, of as high degree as possible.13

To this purpose the algebraic normal form (ANF) of the boolean functions involved in a cipher14

are considered and functions of as high degree and high algebraic immunity as possible should15

be used.16

2.9 A Remark on The Rebound Attack17

We do not discuss here the rebound attack. It is a useful tool in the cryptanalysis of crypto-18

graphic hash functions designed aroundAES-like compression functions, but it is not a specific19

method for block ciphers.20

It was first published in 2009 by Florian Mendel, Christian Rechberger, Martin Schläffer and21

Søren Thomsen [MRST09] to analyse the hash functions Whirlpool and Grøstl; It was later22

applied to Keccak, JH, Skein and other designs [LMR+09, LMR+10, MRST10, NP11, NPTV11,23

DGPW12].24

Still, it is clear that methods to study the security of hash functions based on block ciphers are25

important when designing a block cipher if the use in a hash function is one of the intended26

use cases of the design. Therefore rebound attacks have been taken into account in the study of27

block ciphers [NPSS10]. LED is a block cipher designed taking rebound attacks into account for28

the case where it is used to construct a hash function [GPPR12] (Subsection 3.37.4 on page 229).29
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Chapter 31

Block Ciphers2

I don’t want to do architecture that’s dry and dull.3

Frank Gehry4

We describe here an ample selection of block ciphers. The designs are often very different from5

each other and are a testimony to the creativity of the cryptographic community.6

This chapter makes no attempt to be exhaustive: several ciphers are only mentioned in passing7

or are just omitted. The purpose is to exemplify the main design types and their variants, their8

strengths and weaknesses, especially with respect to algorithmic security and performance –9

while at the same time presenting all the most significant block ciphers designed in the last10

four decades.11

We also do not aim at providing complete descriptions of all ciphers with full details – these12

can be found in the specifications, which are always referenced. We attempt to focus on the13

salient aspects of each design, such as the overall topology and the relations to other designs.14

In general we prioritise giving details about the main encryption routine over the key schedule.15

The ordering of the presented ciphers is, for themost part, chronological according to the date of16

algorithm disclosure. There are a few exceptions, for instance when cipher families are treated17

together (for instance in the cases of DES, SAFER and Camellia) or when some ciphers have18

been grouped for historical reasons or extreme similarity.19

There are countless block ciphers, so it is nearly impossible – and perhaps pointless – to provide20

a complete description of all designs together with all their variants. More than 70 ciphers are21

here described, but had to omit evenmore ciphers for several reasons, such as similarity to other22

designs, lack of complete specifications, and, ultimately, space and time. Some of the cipherswe23

did not include are: 3-Way, AIDA, Akelarre, ARIA, Armadillo, BaseKing, BassOmatic, BATON,24

CIKS-1, CIPHERUNICORN-A, CMEA, Cobra, COCONUT98, Crab, Cryptomeria/C2, CS-Ci-25

pher, DONUT, EPCBC, FEA-M, Grand Cru, Hummingbird, Hummingbird-2, ICE, Intel Cas-26

cade Cipher, Iraqi, Khufu and Khafre, KN-Cipher, Libelle, M6, M8, MacGuffin, Mercy, MMB,27

MULTI2, MultiSwap, New Data Seal, Nimbus, NUSH, PEANUT, Puffin, Puffin-2, Q, REDOC-28

II, REDOC-III, Red Pike, S-1, SAVILLE, Seed, SMS4, SPEED, Spectr-H64, SXAL/MBAL, Treyfer,29

UES, Vitamin-B, WALNUT, Xenon, xmx, and Zodiac.30

Our exposition starts with Lucifer, one of the very first block ciphers, if not the first. There are31

indeedprecursors that can be considered block ciphers aswell, such as polygraphic substitution32

ciphers.33

One of these is the Playfair cipher, invented in 1854 by Charles Wheatstone, and used until the34

second world war by Commonwealth forces and also by the German Army. Playfair operates35

on digraphs instead of single letters to make statistical analysis more difficult. A description of36
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the cipher and its cryptanalysis are given in Chapter 7 of the U.S. Army Training and Doctrine1

Command (TRADOC) Basic Cryptanalysis Field Manual [TRA90].2

Another example is the Hill cipher. Invented by Lester S. Hill in 1929, it is a polygraphic sub-3

stitution cipher based on linear algebra, the first such cipher that made it practical to operate4

on more than three symbols at once, and it could be implemented by a mechanical machine,5

described in US Patent 1,845,947.6

However, Lucifer is the first mathematically non trivial family of block ciphers intended to be7

implemented on a general purpose computer. Hence, it will be our starting point.8

3.1 Lucifer9

In the late 60s Horst Feistel, and later Walt Tuchman, led an IBM research program to develop10

secure ciphers, called Lucifer. This project culminated in 1971 with the development of a se-11

ries of ciphers called Lucifer as well. Some of these ciphers are pure SPNs, others are Feistel12

Networks that use a SPN in their round functions.13

The most unifying aspect of this family of ciphers is the use of two S-boxes which are selected14

by key bits. We are aware of following members of the Lucifer family:15

1. A SPN, described in U.S. Patent 3,798,359 that uses a 48-bit key and operates on 48-bit blocks.16

It uses two 4-Bit S-boxes and key bits select which of the S-boxes acts on each nibble of the17

state. The same S-box selection mechanism is used also in U.S. Patent 3,798,360 on a “step18

code ciphering system.”19

2. Another variant, described in U.S. Patent 3,796,830, uses a 64-bit key operating on a 32-bit20

block, using one addition mod 4 for key mixing followed by the application of an S-box -21

also chosen among two S-boxes depending on key values.22

3. A stronger variant, described in [Fei73], uses a 128-bit key and operates on 128-bit blocks.23

The cipher is an SPN and uses two 4-bit S-boxes. The key selects which S-box is used. How-24

ever, the paper [Fei73] is very scarce on details, which means that several cryptanalitic pa-25

pers had to make often quite arbitrary assumptions in order to study “Lucifer-like” ciphers.26

4. Later, a 16-round Feistel network version of Lucifer was described in [Sor84]. This is the first27

known examples of a practical cipher designed around a SPN, and it is the version we are28

going to describe in the following.29

The first three versions require distinct implementation of encryption and decryption. The30

fourth version uses a single code path for encryption and decryption, with only the key sched-31

ule having to be reversed in order to perform either operation.32

The fundamental building block of these ciphers is depicted in Figure 3.1 on the next page. The33

key bits 𝑘0, 𝑘1, … determine whether the S-box 𝑆0 or 𝑆1 is chosen.34

The particular representation refers to the versions of the cipher with nibble-wide branches,35

i.e. the first three. The Feistel Network version of Lucifer considers the state byte-wise, and a36

single bit determines how the two 4-bit S-boxes transform the two nibbles in a byte, as we shall37

explain shortly.38
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Figure 3.1: The Lucifer Basic Building Block
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The Feistel Network version of Lucifer has a 128-bit key and block length. It is a 16 rounds,1

balanced 2-branch Feistel construction (as in Figure 1.3 on page 29 butwithout IP and FP blocks)2

with a one round SPN as the round function. The latter consists of:3

1. A layer of eight pairs of 4-Bit S-boxes. Only two S-boxes are used throughout, denoted by4

𝑆0 and 𝑆1. Each byte of the state is transformed by two S-boxes acting in parallel on the two5

nibbles. The least significant byte of the current round key is used to choose which nibble is6

fed to which S-box: if the value of the 𝑖-th bit of the round key byte is one, the two nibbles of7

the state byte are swapped; then 𝑆0 acts on the least significant nibble while 𝑆1 acts on the8

most significant nibble – the S-box selection system is described in U.S. Patent 3,798,360.9

2. Then the round key is XORed to the state.10

3. Then each byte of the state is passed through a fixed permutation of its bits.11

4. Finally, a simple convolution is computed on the 8 half-state bytes to guarantee diffusion.12

The key schedule is very simple: the key is rotated by 7 bytes after each round. The round key13

then consists of the 8 least significant bytes of the (rotated) key. The least significant byte of the14

round key is used twice, as it also parametrises the S-boxes, as we have seen.15

This version of Lucifer is susceptible to differential cryptanalysis; Preliminary results were16

published in [BS91b], using S-box values borrowed from DES. A complete analysis shows for17

about half the keys, the cipher can be broken with 236 chosen plaintexts and 236 time complex-18

ity [BAB93, BAB96].19

3.1.1 Intellectual Property20

The Lucifer designs were covered by a few patents, some of which we already mentioned, that21

have since expired.22

3.2 DES23

A design borrowing ideas from Lucifer and with a key size reduced to 64 bits was submitted24

in 1976 by IBM to the National Bureau of Standards (NBS). The NSA then persuaded IBM to25

reduce the effective key size from 64 to 56 bits by including a parity bit in each byte of the key26

as the most significant bit, and also changed the S-boxes. This drew immediately considerable27

criticism, but it was later revealed that this made the S-boxes better resistant to differential28

cryptanalysis. The revised cipher was selected as an official Federal Information Processing29

Standard (FIPS) for the United States as the Data Encryption Standard (DES) in 1977.30
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Figure 3.2: The Data Encryption Standard
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The design, represented in Figure 3.2, is now known as a Feistel network. DES has 16 rounds.1

The Initial Permutation (IP) and Final Permutation (FP) are the inverse of each other.2

The cipher is still deployed despite being considered nowadays insecure.3

3.2.1 Description4

3.2.1.1 The F-function5

The round function, represented in Figure 3.3 on the facing page, operates on a 32-bit branch6

at a time and consists of four stages:7

1. Expansion: the 32-bit half-block is expanded to 48 bits using the expansion permutation,8

by duplicating half of the bits. This function is represented by the letter 𝔢 in Figure 3.2. The9

output consists of eight 6-bit chunks, each containing a copy of 4 corresponding input bits,10

plus a copy of the immediately adjacent bit from each of the input pieces to either side. Each11

S-box is such that for each fixed choice of the most significant bit and of the least significant12
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Figure 3.3: The DES Round Function
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bit of the input, the output is a permutation of the values represented by the middle four1

input bits.2

2. Key mixing: the result is XORed with a round key. Sixteen 48-bit round keys – one for3

each round – are derived from the main key using the key schedule.4

3. Substitution: The eight 6-bit chunks of the state are transformed non-linearly by eight5

different S-boxes. The output of each S-box is just 4 bits long. Therefore the output of the6

substitution layer is just 32 bits wide. This step is merged with the next one and represented7

by the letter 𝔠 (because it compresses its input from 48 to 32 bits) in Figure 3.2.8

4. Permutation: Also called the P-box, this is a fixed permutation of the output of the sub-9

stitution layer. This guarantees diffusion.10

The purpose of the expansion in the F-function is to allow themixing ofmore bits in each round11

– in other words to improve confusion. We see here the heritage of Lucifer: Each 6-by-4-bit S-12

box can be viewed as four 4-bit S-boxes, selected by the first and the last significant bits of the13

input – and these are influenced by the round key. For instance, the first S-box is defined as14

follows, the input being given as 𝑥‖𝑌‖𝑧, where 𝑥 and 𝑧 are single bits and 𝑌 is a four-bit value:15

𝑆1: Y = 0 1 2 3 4 5 6 7 8 9 A B C D E F

�(𝑥, 𝑧) =
⎧
⎪
⎨
⎪
⎩

(0,0) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
(0,1) 0 F 7 4 E 2 D 1 A 6 C B 9 5 3 8
(1,0) 4 1 E 8 D 6 2 B F C 9 7 3 A 5 0
(1,1) F C 8 2 4 9 1 7 5 B 3 E A 0 6 D
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3.2.1.2 The Key Schedule1

The key schedule the splits the 56 effective bits of the key into two 28-bit halves. The function2

that partitions the bits is called Permuted Choice 1 (PC1).3

These two halves are each rotated cyclically by fixed amounts at each round, either one or two4

bits depending on the round. The sequence of rotation amounts is irregular: in rounds 1, 2, 95

and 16 the rotation amount is one bit, in all other rounds it is two bits.6

From the two rotated 28-bit halves, 48 bits are selected, 24 bits per each half, using a fixed7

function, called Permuted Choice 2 (PC2), to form the round key.8

3.2.2 Other Properties9

DES exhibits the complementation property, namely that10

𝐸𝐾(𝑃) = 𝐶 ⟺ 𝐸𝐾(𝑃) = 𝐶

where 𝑥 is the bitwise complement of 𝑥. 𝐸𝐾 denotes encryption with key 𝐾. 𝑃 and 𝐶 denote11

plaintext and ciphertext blocks respectively. This property implies that the work for a brute12

force CP attack could be reduced by a factor of 2 (or a single bit).13

There are four weak keys (same encryption), and six pairs of semi-weak keys (encryption with a14

key in a pair is equivalent to decryption with the other key in the same pair). These keys can15

be easily avoided by checking against them.16

It has been proved that DES has a maximum security level of 64-bits even if all 16 48-bit round17

keys were chosen independently (yielding a key space of 768 bits).18

3.2.3 Cryptanalysis19

Mathematically speaking, DES was broken by linear cryptanalysis in 1993 by Mitsuru Mat-20

sui [Mat93]. Linear cryptanalysis of DES requires time equivalent to 239 to 243 DES evaluations,21

as estimated in 2001 by Pascal Junod [Jun01a, Jun01b].22

Davies’ specific attack for DES, as improved by Biham and Biryukov [BB97], requires 250 known23

plaintexts andhas a computational complexity of 250 with a 51% success rate (cf. Subsection 2.7.124

on page 121).25

In June 1997, the DESCHALL Project (DESCHALL is short for DES Challenge), led by Rocke26

Verser, Matt Curtin, and Justin Dolske, successfully decrypted a DES encrypted message in27

90 days [CD98]. This attack was a distributed brute force attack. In July 1998, the EFF’s DES28

cracker (Deep Crack) broke a DES key in 56 hours.29

This prompted the NBS to introduce Triple-DES (Subsection 3.2.8 below)) in 1999, start the30

AES specification process (finished in 2001, see Section 3.19 on page 177) and finally, in 2005,31

deprecate the use of DES altogether. Since then, there has been further progress, for instance32

the 2002 chosen-plaintext attack by François Koeune et al. [KRS+02] that could break the DES33

in less than 15 hours, using $ 3500 worth of hardware. As of today it is possible to break a DES34

key in a few hours using commercially available array of FPGAs such as COPACOBANA and35

RIVYERA, or cloud services like CloudCracker for just 17 dollars.36
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3.2.4 Advantages1

Since DES is a Feistel network, encryption and decryption are similar. Decryption is in fact just2

encryption where the order of the round keys is reversed, so it requires very little additional3

SW or HW – mostly for flow control.4

3.2.5 Disadvantages5

The key size is too short to provide a reasonable level of security. It is practically broken by6

linear cryptanalysis and brute force. For today’s standard, the throughput per security level is7

on the low side.8

3.2.6 Intellectual Property9

When the DES was introduced, U.S. Patent 3,962,539 covered aspects of its design, such as10

round functions that use expansion functions based such as 𝔢. This patent expired on June11

1, 1993. However, International Business Machines Corporation (IBM) granted nonexclusive,12

royalty-free licenses under the patents to make, use and sell apparatus which complied with13

the standard. In the meantime any patent pertinent to the original design has expired. This14

also explains why further cipher designs using state expansion in the round functions were not15

proposed for many years, the first notable new application of the idea being PICARO (Subsec-16

tion 3.38.1 on page 230) about 35 years later.17

3.2.7 The Bit-Slicing Implementation Technique18

Not only did the DES stimulate an amazing amount of creativity in its attackers, it also spurred19

the creation of new implementation techniques.20

For instance, DES can efficiently implemented by using the bit-slicing technique, as described21

first by Eli Biham in [Bih97b].22

On a machine with 𝑤-bit registers, these are used as SIMD vectors of single bit elements.23

Each bit of the state of the cipher is stored in a fixed bit of a different machine word, and the24

states of up to 𝑤 different instances of the cipher can be thus stored in parallel, interleaved bit25

by bit. Each logical operation on these machine words performs the same operation in parallel26

on the corresponding bits of all the instances of the cipher.27

Each component of the cipher must be implemented using logic operators: even S-boxes, that28

in traditional implementations are often performed by table lookup must be represented math-29

ematically and described by short straight line programs.30

This implies that the latency of a single encryption increases with respect to more traditional31

implementations. On the other hand, 𝑤 mutually independent encryptions can be performed32

simultaneously. Thus, this approach proves useful in some contexts where latency is less of a33

concern, but combined high throughput of independent encryptions is desirable.34

Bit-slicing has become then a cipher design criterion. I.e. ciphers have been designed where35

the internals of a single encryption can be parallelised and implemented efficiently in software,36

for instance when several parallel instances of a single S-box applied to the state and/or with37

clever bit wirings. Serpent (Section 3.17 on page 170) is one such example. More recent ones38

include Robin and Fantomas (Subsection 3.38.3 on page 232).39
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3.2.8 Triple-DES1

To counter the recent successful attacks on DES, in 1998 ANSI X9.52 and FIPS 46-3 introduced2

the Triple-DES encryption algorithm. As the name suggest, it is a triple encryption process3

based on DES. It uses a “key bundle” which comprises three 56-bits DES keys 𝐾1, 𝐾2, and 𝐾3.4

The encryption algorithm is:5

ciphertext = 𝐸𝐾3
(𝐷𝐾2

(𝐸𝐾1
(plaintext)))

I.e., DES encrypt with 𝐾1, DES “decrypt” with 𝐾2, then DES encrypt with 𝐾3. The block size is6

unchanged at 64 bits.7

The standards define three keying options:8

1. All three keys are independent.9

2. 𝐾1 and 𝐾2 are independent, and 𝐾1 = 𝐾3.10

3. All three keys are identical, i.e. 𝐾1 = 𝐾2 = 𝐾3.11

In each case the middle operation is the reverse of the first and last. This improves the strength12

of the algorithm when using keying option 2, and provides backward compatibility with DES13

with keying option 3.14

Keying option 1 is the strongest, with 3 × 56 = 168 independent key bits.15

Keying option 2 provides less security, with 2×56 = 112 key bits, but is stronger than just simply16

DES encrypting twice, e.g. because it protects against meet-in-the-middle attacks. However, it17

can still be defeated in time and space 𝑂(256) by a chosen plaintext attack [MH81].18

Keying option 3 is equivalent to DES, with only 56 key bits, it is now deprecated and was only19

provided to guarantee backward compatibility with DES.20

3.2.9 DES-X21

DES-X (sometimes also denoted DESX) is a variant of DES intended to increase the complexity22

of a brute force attack using key whitening. The idea was suggester in 1984 by Ron Rivest23

and consists in augmenting DES by XOR-ing an extra 64 bits of key 𝑘0 to the plaintext before24

applying DES, and then XORing another 64 bits of key 𝑘2 after the encryption:25

DES-X𝐾0,𝐾1,𝐾2
(𝑀) = DES𝐾1

(𝑀 ⊕ 𝐾0) ⊕ 𝐾2 .

The key size is thereby increased to 56 + (2 × 64) = 184 bits. This construction is also known26

as the FX Construction (see Section 1.6 on page 38) and was analyzed by Joe Kilian and Phillip27

Rogaway in [KR96b, KR01a]. The effective key size is then 118 bits (cf. Section 1.6 on page 38).28

Advanced slide attacks break DES-X [BW00] with just 232.5 data in time 287.5 (known plaintext)29

or 295 (ciphertext only).30

Eli Biham estimates [Bih94a] (see also Burton Kaliski and Matthew Robshaw [KR96a]) that dif-31

ferential cryptanalysis would require 261 chosen plaintexts (as opposed to 247 for DES), while32

linear cryptanalysis would require 260 known plaintexts (vs. 243 for DES.)33
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3.2.10 GDES1

In 1981 Ingrid Schaumüller-Bichl [SB81] proposed a DES variant called GDES (Generalized2

DES) with the purpose of improving both security and throughput of DES.3

The most noticeable aspect of this cipher is that is is an unbalanced Feistel network. In other4

words, the “right” and “left” sides have variable lengths.5

The block size is variable and amultiple of 32. In each round, the DES round function is applied6

to the rightmost 32-bit subblock, and the result is XORedwith all the other parts. Then the block7

is rotated 32 bits to the right.8

In 1990, Eli Biham andAdi Shamir showed that GDES is vulnerable to differential cryptanalysis,9

and that any GDES variant faster than DES is also less secure than DES [BS90, BS91a].10

3.2.11 DESL and DESXL11

DESL and DESXL are lightweight DES variants (the “L” stands for “lightweight”) proposed by12

Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm at FSE 2007 [LPPS07].13

Unlike DES, DESL uses a single S-box repeated eight times. The S-box is designed taking into14

account cryptanalitic results on Feistel-network ciphers, so that DESL is resistant against certain15

types of the most common attacks, i.e., linear and differential cryptanalyses, and the Davies-16

Murphy attack.17

DESXL is the variant of DESL that uses key whitening, similarly to DES-X.18

3.3 Some Early Post-DES Developments19

A flurry of new ciphers were introduced in the wake of the standardisation of the DES. Many20

of them have been broken quickly, however, some also introduced novel design ideas which21

have resurfaced many times since. We present here just four such ciphers: Madryga, NewDES,22

KeeLoq and FEAL.23

3.3.1 Madryga24

Madryga was designed by William Madryga [FD84]. We briefly discuss it because some of its25

design choices that have proven influential later.26

The algorithm works with arbitrary key and block lengths. Key schedule consists in first XOR-27

ing the key with a magic constant (that must be defined for each key size) and then rotating the28

key to the left by three bits before each round.29

The state is processed three bytes at a time, cyclically. Each round the “window” of processing30

is moved by a byte along the state. So if the cipher were working on bytes 2, 3 and 4, at the31

following round it would process bytes 3, 4 and 5.32

The operations in each round are very simple: The rightmost byte in the window is XORed33

with the rightmost byte of the (current) key, It XORs a key byte with the rightmost byte, and34

rotates the other two as one block. The rotation depends on the output of the XOR, hence it is35

both state and key dependent.36

The cipher makes at least 8 cyclic passes over the whole state - the state at the end of the last37
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cycle is the ciphertext.1

Decryption is easily implemented, since the rotation amount can be obtained before undoing2

the XOR.3

3.3.1.1 Remarks4

The cyclic processing of arbitrarily long states is one of the distinctive features of Block TEA5

(Subsection 3.12.3 on page 162) and XXTEA (Subsection 3.12.5 on page 164).6

The byte-wise processing of the state without complex bit permutation layers makes the cipher7

easy to implement and very efficient in software. This is a deign principle that has been adopted8

(to varying degrees) in several other ciphers, such as IDEA (with 16 bit words, see Section 3.69

on page 144), the SAFER family of ciphers (Section 3.8 on page 150), and most of the ciphers10

designed according to the wide-trails strategy.11

A few subsequent ciphers also use variable rotations, such as RC5 (Section 3.10 on page 158),12

and RC6 (Section 3.15 on page 168).13

3.3.1.2 Cryptanalysis14

All of Madryga’s operations are linear - there is no source of nonlinearity such as the DES S-15

boxes or other logical or arithmetic operations.16

Madryga’sworst flaw is that it does not exhibit the desired avalanche effect [GDC90] – in general17

changes in one byte induce changes in the previous byte of the state and in at most the next two.18

Therefore, if the block is too large, changes may not propagate sufficiently.19

Also, Eli Biham (in a personal communication to Bruce Schneier, cf. [Sch96], Section 13.2) no-20

ticed that “the parity of all the bits of the plaintext and the cipher text is a constant, depending only on21

the key. So, if you have one plaintext and its corresponding ciphertext, you can predict the parity of the22

ciphertext for any plaintext.”23

Ken Shirrif [Shi95] proved that Madryga is susceptible to differential cryptanalysis. The key24

can be determined with as little as 5,000 chosen plaintexts, and 10,000 on average.25

Alex Biryukov and Eyal Kushilevitz in [BK98a] improved this attack twice. Firstly, with a differ-26

ential attack requiring only 16 chosen-plaintext pairs. Secondly, they turned it into a ciphertext27

only attack, with only reasonable assumptions on the statistical distribution of the bytes in the28

plaintext. The attack requires only 212 ciphertexts.29

3.3.1.3 Intellectual Property30

We are not aware of patents on Madryga. However, since the cipher was disclosed in 1984, any31

patent would have already expired.32

3.3.2 NewDES33

Robert Scott designed NewDES in 1985 as a possible replacement for DES [Sco85]. It operates34

on 64-bit blocks of plaintext with a 120-bit key. The state is divided into 8 one-byte blocks and35

the key into 15 one-byte subkeys.36

The cipher has 17 equal rounds and no initial or final permutation. The subkeys are considered37
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Figure 3.4: A Cycle (Two Rounds) of NewDES
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cyclically and each round uses seven consecutive subkeys.1

A cycle, i.e. two rounds of NewDES are depicted in Figure 3.4: The 17th round consists in just2

the upper half of the cycle represented in the Figure. The cipher can be viewed as a Feistel3

network on two 32-bit branches with two alternating, different F-functions.4

It has a very simple structure. The eight blocks of the state are divided into two sets of four.5

During a round one set of four blocks is transformed non-linearly and XORed to the other set6

of four blocks – then the roles are reversed and the second set of blocks is used to transform the7

values of the first set (but the two halves are not perfectly symmetrical). Hence, there are eight8

non-linear transformations per cycle, four per round. The non linear transformation consists in9

XORing the input with a subkey (in seven cases) or with another block of the state (in one case)10

and feeding this value into an 8-bit S-box. The values of the 8-bit S-box have been derived form11

the Declaration of Independence – and therefore it’s a set of “nothing up my sleeve numbers,”12

not a cryptographically designed S-box.13

The first 8 cycles use each 7 subkeys alternatively, and the last round uses 4 subkeys. Thus, each14

byte of the 120-bit key is used exactly 4 times. A similar key schedule is used in the Bielorussian15

cipher BelT (Section 3.33 on page 214).16

The designer showed that NewDES exhibits the full avalanche effect after seven rounds: every17

ciphertext bit depends on every plaintext bit and key bit. NewDES has the same complemen-18

tation property that DES has: namely, that if 𝐸𝐾(𝑃) = 𝐶, then 𝐸𝐾(𝑃) = 𝐶, where 𝑥 is the bitwise19

complement of x.20

The cipher can be made quite fast in software, because of its byte-oriented structure. It can be21
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implemented either compactly or efficiently in hardware as well, because it uses just a small1

amount of different operations in a fairly regular pattern, but at the same time up to four state2

block transformations can be easily parallelised. The same parallelism can be exploited in SW3

on 16- or 32-bit architectures.4

3.3.2.1 Cryptanalysis5

Only a small amount of cryptanalysis has been published on NewDES. The complementation6

property makes brute force attacks faster by a factor of 2.7

Bruce Schneier reports in [Sch96], Section 13.3, a few observations by Eli Biham: changing a8

full byte in all the key and data bytes leads to another complementation property, reducing the9

complexity of bruce force attacks by a factor 28; a related-key attack can break NewDES with10

233 chosen-key chosen plaintexts.11

John Kelsey, Bruce Schneier, and David Wagner’s related-key cryptanalysis [KSW97] breaks12

NewDES with 232 known plaintexts and one related key.13

When informed of this attack, Scott modified the NewDES key schedule to resist rotational14

related key cryptanalysis. The new key schedule starts with the 15 bytes of the key 𝑘0, 𝑘1, … , 𝑘14,15

and then instead of repeating them, it first XORs all the bytes of the sequence first with 𝑘7,16

then 𝑘8, and finally 𝑘9. The resulting cipher is called NewDES-1996. However, in [KSW97] it is17

shown that NewDES-1996 can be completely brokenwith 24 related-key probes and 530 chosen18

plaintext/ciphertext queries.19

3.3.2.2 Remarks20

The design is interesting, however it has some obvious weaknesses:21

• The S-box displays poor linear and differential properties; and22

• Diffusion is slow as, in the current form, full diffusion is only achieved after 7 rounds.23

3.3.3 KeeLoq24

KeeLoq is a proprietary block cipher designed byGideon Kuhn for south african companyNan-25

oteq Pty Ltd in the mid 80’s It was sold to Microchip Technology Inc in 1995. It is specially de-26

signed for compact implementation in hardware. Based on Kuhn’s work on self-synchronising27

stream ciphers [Kuh88], Keeloq is an unbalanced Feistel cipher based on a NLFSR (non-linear28

feedback shift register). KeeLoq was meant for lightweight HW implementations [KBS90] and29

is still used in many remote keyless entry systems by several car manufacturers.30

KeeLoq accepts 64-bit keys and encrypts 32-bit blocks by executing its single-bit NLFSR for 52831

rounds. An important component in the feedback function is the non-linear function 𝔫 (often32

named after the hexadecimal value 3A5C742E𝑥) that is given as33

𝔫(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = 𝑑 ⊕ 𝑒 ⊕ 𝑎𝑐 ⊕ 𝑎𝑒 ⊕ 𝑏𝑐 ⊕ 𝑏𝑒 ⊕ 𝑐𝑑 ⊕ 𝑑𝑒 ⊕ 𝑎𝑏𝑐 ⊕ 𝑎𝑏𝑑 ⊕ 𝑎𝑐𝑒 ⊕ 𝑎𝑑𝑒

where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are bits number 1, 9, 20, 26 and 31 of the NLFSR state during encryption34

and bits number 0, 8, 19, 25 and 30 during decryption. This function is specified by a table in35
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the original specifications. The actual NLFSR feedback function is given as1

𝐹(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑥, 𝑦, 𝑧) = 𝔫(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ⊕ (𝑥 ⊕ 𝑦 ⊕ 𝑧)

where 𝑥 and 𝑦 are bits 0 and 16 of the NLFSR on encryption and bits 31 and 15 on decryption,2

and 𝑧 is a key bit (bit 0 of the key state on encryption and bit 15 of the key state on decryption.3

The key schedule is simple: the key is copied into a 64-bit register that is then rotated one bit4

to the left each round.5

Andrey Bogdanov [Bog07a] points at three fundamental weaknesses of the cipher:6

• The key schedule is periodic, allowing the use of sliding techniques;7

• The blocks are just 32 bits; and8

• Efficient linear approximations of 𝔫 exist.9

This allows him to present various attacks, culminating in an attack that needs only time 23710

and using 232 32-bit known plaintexts [Bog07b]. Soon hereafter, the complexity of the attacks11

was brought down to just 228 for about 30% of the key space (also using 232 known plaintexts)12

by Nicolas Courtois, Gregory V. Bard and David Wagner in [CBW08]13

The cipher can also be broken using side channel analysiswith only ten power traces. The attack14

described in [EKM+08] allows efficient recovery of both the secret key of a remote transmitter15

and the manufacturer key stored in a receiver in just a few minutes, permitting practical the16

cloning of remote controls.17

The KeeLoq system is also susceptible to replay attacks.18

3.3.3.1 Intellectual Property19

Implementations of the KeeLoq cipher and several systems using it are heavily protected by20

patents, starting with the U.S. Patent 5,517,187, protecting its implementation in a microchip,21

which is the IP sold by Nanoteq to Microchip Technology Inc in 1995.22

3.3.4 FEAL23

FEAL (the Fast data Encipherment ALgorithm) is a 64-bit block cipher first published in 198724

by Akihiro Shimizu and Shoji Miyaguchi from NTT [SM87]. FEAL is a Feistel design. The25

initial version, now called FEAL-4, was a four-round cipher and used a 64-bit key size. There26

are options for including parity bits in the key. The cipher was quickly broken: FEAL was first27

extended to 8 rounds, then to arbitrarily many rounds, and a 128-bit key option was added. Eli28

Biham and Adi Shamir show in [BS91c] that variants with fewer than 31 rounds can be broken.29

NTT is still using the cipher: The current version is called FEAL-NX where the even integer30

𝑁 ⩾ 32 is the number of rounds, and X means that the 128-bit key contains no parity bits.31

As a Feistel network, the encryption path of FEAL is quite standard, but the cipher has a few32

interesting historical aspects:33

• Apart from DES-X (Subsection 3.2.9 on page 134), it is the oldest cipher we are aware of to34

use key whitening to improve its strength.35
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Figure 3.5: The FEAL F-function
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Figure 3.6: The FEAL FK-Function
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• The structure of the FEAL F-function, depicted in Figure 3.5, can be viewed is a precursor of1

the IDEA round function (Section 3.6 on page 144 and in particular Figure 3.9 on page 145):2

Each half of the input is “compressed” into smaller chunks that are input to a “confusion3

device” inspired by a Hadamard transform; the confused output is then applied to the rest4

of the input. In the Figure, 𝛼 is a 32-bit Feistel branch, whereas 𝛽 is a 16-bit round key.5

• Instead of using S-boxes, non-linearity is achieved by combining the XOR with modular6

addition. In fact, non linear parts of the F-function just consist in the two functions 𝑆0(𝑎, 𝑏) =7

((𝑎 + 𝑏) mod 256) ⋘ 2 and 𝑆1(𝑎, 𝑏) = ((𝑎 + 𝑏 + 1) mod 256) ⋘ 2.8

• The key schedule is similar to a Matsui-like Feistel network (cf. Figure 1.4 on page 31 (b)),9

where one half of the key is “encrypted” by using the other half as the key. The F-function10

of the key schedule, called the FK-Function, is similar to the F-function of the cipher: it is11

depicted in Figure 3.6. The main difference w.r.t. the F-function is that the 32-bit “round12

key” 𝛽 is split into four bytes that are each XORed with one of the inputs to the 𝑆0 and 𝑆113

functions. Also, intermediate values of the key scheduling process are saved to be reused at14

later stages of key scheduling.15

We note that a XOR and amodular addition share several bits with a strong bias, and this alone16

is not sufficient to guarantee the hardness of a cipher. This is what ultimately has killed FEAL.17

3.3.5 Intellectual Property18

U.S. Patent 4,850,019 covered aspects of the cipher.19

3.4 The GOST Block Cipher20

GOST (Russian: ГОСТ) is a set of technical standards originally developed by the government21

of the Soviet Union as part of its national standardization strategy, now maintained by the22

Euro-Asian Council for Standardization, Metrology and Certification (EASC), a regional standards23
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Figure 3.7: The GOST Round Function
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organization operating under the auspices of the Commonwealth of Independent States (CIS).1

GOST is an acronym of gosudarstvennyy standart (Russian: государственный стандарт), which2

simply means state standard.3

Standard GOST 28147-89 defines several cryptographic algorithms, among them an elliptic4

curve based signature scheme and a block cipher. GOST 28147-89 is obligatory to use in the Rus-5

sian Federation in all data processing systems providing public services. The original descrip-6

tion of the algorithm is available here (in russian). A description in english of the encryption,7

decryption, and MAC algorithms is found in RFC 5830.8

In the rest of this document GOST simply denotes the block cipher.9

Developed in the 1970s as a Soviet alternative to the US standard algorithm DES and originally10

classified as “top secret,” the GOST Block Cipher was standardized in 1989, downgraded to11

“secret” the following year, and finally declassified and disclosed in 1994.12

GOST has a 64-bit block size and a key length of 256 bits. GOST is a balanced Feistel network13

of 32 rounds. The round function, depicted in Figure 3.7, is very simple: Let 𝐿 and 𝑅 be the left14

and right 32-bit halves of the input to a round; add a 32-bit round key modulo 232 to 𝑅; apply a15

layer of eight 4-bit S-boxes; and rotate the result thereof left by 11 bits. The result of that is the16

output of the round function, which is then XORed to 𝐿. Then, as in DES, 𝑅 and 𝐿 are swapped.17

The S-boxes of GOST are not fixed and for a specific application a new set of S-boxes can be cho-18

sen. Also, they can be public or secret, and contain about 354 (log2((16!)8)) bits of information.19

If they are secret, the total amount of secret material in the cipher is thus 610 bits.20

The key schedule is very simple. The 256-bit key is broken into eight 32-bit subkeys, and each21

subkey is used four times in the algorithm; the first 24 rounds use these subkeys in order, the22

last 8 rounds use them in reverse order. This broken symmetry allows GOST to eschew slide23

attacks.24

3.4.1 Remarks25

GOST is very similar to DES, however there are some significant differences:26

(a) It is one of the first widely deployed ciphers to use 4-bit S-boxes.27
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(b) Since S-boxes can be chosen for specific applications, an implementation using just one S-box1

could be effectively implemented in SW using bit-slicing.2

(c) It uses a simple rotation instead of a more complicated permutation, does not have an ex-3

pansion permutation. The consequence is that the avalanche effect is slower. This is offset4

by the larger number of rounds.5

(d) Alex Poschmann et al. [PLW10] revisit GOST and observe that its design makes it ideal for6

low gate count HW implementations and good throughput. They use a single S-box (the7

same S-box as PRESENT, Section 3.29 on page 206), following recent design trends to use just8

one good S-box instead of several random(ish) ones. Their performance results are reported9

in Table 4.1 on page 237, where both GOST implemented with eight different S-boxes as10

used by the Central Bank of Russian Federation (GOST-FB), and GOST with the PRESENT11

S-Box eight times (GOST-PS) are measured.12

It is also one of the earliest ciphers to combine bitwise XOR and modular addition – two mutu-13

ally non-linear operations. This is a fundamental aspects of many subsequent cipher designs.14

3.4.2 Cryptanalysis15

Until about 2010 the cipher was considered very secure, and thus a good alternative to AES-256.16

However, since 2010 several attacks have been published. The best undisputed cryptanalysis17

is a differential attack what breaks the cipher with complexity 2179 [Cou12a] whereas with the18

controversial XSL attack [CP02b] Nicolas Courtois claims that it is possible to attack GOSTwith19

heuristic complexity 2100 (the time complexity of attacking AES-256 with the same methods is20

claimed to 2101). See also [Cou12b, Cou13].21

We mentioned that the GOST S-boxes are free to be be chosen for any specific application22

and also kept secret. Their entropy is approximately 354 (log2((16!)8)) bits, so the effective23

key size could, in theory, be increased to 610 bits; However, some care is necessary in the24

implementation and protocols to avoid attacker’s access to an oracle where he can set a zero25

key. Under this assumption, Markku-Juhani Saarinen has shown how to mount an attack (cf.26

Subsectionsubsec:GOST-sbox-recovery) that recovers the contents of all the S-boxes in time 232.27

Therefore the secrecy of the S-boxes does not increase the strength of the cipher in several sce-28

narios.29

3.4.3 Intellectual Property30

We are not aware of any patents on the GOST block cipher.31

3.4.4 Advantages and Disadvantages32

It is a fast and small cipher, however there are concerns about its security.33

3.5 RC234

RC2 is a block cipher designed by Ron Rivest in 1987. Its development was sponsored by Lotus,35

whowere seeking a customcipher that, after evaluation by theNSA, could be exported as part of36

their LotusNotes software. TheNSA suggested a couple of changes, which Rivest incorporated.37
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Figure 3.8: The RC2 MIX Function
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After further negotiations, the cipher was approved for export in 1989. Along with RC4, RC21

with a 40-bit key size was treated favorably under the US export regulations for cryptography2

at the time.3

Initially, the details of the algorithm were kept secret and proprietary, but on 29 January 1996,4

source code forRC2was anonymously posted to the Internet on theUsenet forum,sci.crypt.5

Eventually, in March 1998 Ron Rivest authored RFC 2268, publicly describing RC2 himself.6

RC2 is a 64-bit block cipher with a variable size key. The cipher uses a byte substitution table7

whose elements are derived from the expansion of 𝜋, but the table itself is used only to expand8

the given key to 128 bytes, and not in the data obfuscation part.9

The 18 rounds of the cipher are arranged as a source-heavy Feistel network, with 16 rounds of10

one type (MIXING) and two rounds of another type (MASHING). A MIXING round consists11

of four applications of the MIX transformation shown in Figure 3.8. The ADD used to combine12

the outputs of the two ANDs can be replaced with a XOR or an OR.13

AMASHING round consists of addition of round keywords to all words of the state, the round14

key words chosen by using some bits of the state itself as an index. The rounds are ordered as15

follows: five MIXING rounds, one MASHING round, six MIXING rounds, one MASHING16

round, and five MIXING rounds.17

3.5.1 Cryptanalysis18

RC2 is vulnerable to a related-key attack using 234 chosen plaintexts [KSW97], however this is19

a related-key attack and not applicable to all scenarios.20

Lars R. Knudsen, Vincent Rijmen, RonaldRivest andMatthewRobshaw found that RC2 seemed21

to provide resistance to differential cryptanalysis [KRRR98]. Later, the CRYPTREC evaluation22

of RC2 [CRY01, CRY03] showed how a differential attack could recover the secret key using23

about 260 chosen plaintexts – independently of the key length. Thus, for key sizes bigger than24

64, there is an attack on RC2 which, is faster than an exhaustive search for the key.25

Since today one expects about 80 bits of security as a minimum from a block cipher, even a26

lightweight one, we conclude that RC2 does not offer sufficient security.27
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3.5.2 Advantages and Disadvantages1

The cipher is fast and has low latency [HMPM05], but its security level is insufficient for today’s2

requirements.3

3.5.3 Intellectual Property4

The name RC2 is a trademark, registered by RSA Data Security Inc. We are not aware of any5

patents on the RC2 algorithm (the algorithm was originally protected as a trade secret).6

3.6 IDEA7

James Massey and his PhD student Xuejia Lai designed the International Data Encryption Al-8

gorithm (IDEA) on behalf of the Swiss company Ascom Tech AG and published its details in9

1991 [LM90]. The primary reference for IDEA is Lai’s PhD Thesis [Lai92].10

IDEA is an improvement on a previous cipher by the same authors, the Proposed Encryption11

Standard (PES) [LM90]. Lai and Massey, together with Sean Murphy, showed that differential12

cryptanalysis could be used to recover PES keys [LMM91]. PES was then corrected, and the13

resulting cipher, initially called IPES (Improved PES), later was renamed to IDEA. The name14

IDEA is a trademark. The cipher was patented, but the patents are now expired.15

IDEA is used in Pretty Good Privacy (PGP) v2.0, and was incorporated after the original cipher16

used in v1.0, BassOmatic, was found to be insecure. IDEA is an optional algorithm in the17

OpenPGP standard. It is also used for Pay-TV applications.18

IDEA is an iterative block cipher, and it is one of the oldest public designs of an iterative SPN19

that is not a Feistel network, in fact this design has its own name, the Lai-Massey Design, after20

the names of the architects of the cipher (cfr. Section 1.5 on page 37).21

IDEA operates on 64-bit blocks using a 128-bit key. It consists of a series of eight identical22

rounds, depicted in Figure 3.9 on the facing page, followed by an output transformation called23

the “half-round” and depicted in Figure 3.10. Each 64-bit block is split into 4 16-bit fields and24

all operations are performed on 16-bit values, with a high level of parallelism. At the end of25

each round two of the 16-bit fields are swapped. The half-round starts by undoing the swap at26

the end of the previous round, which in practice is just optimized away.27

A full round is composed of two parts. The first part is a key mixing half-round. The second28

part is a 32-to-32-bit Multiplication-Addition Box (MA Box) bracketed by XOR operations to29

first reduce the input from 64 bits to 32, and then to spread the output of the MA Box on the30

whole 64-bit block.31

Each round uses six 16-bit subkeys, while the half-round uses four, a total of 52 for 8.5 rounds.32

The first eight subkeys are extracted directly from the key, with 𝑘1 from the first round being33

the lower 16 bits, and 𝑘2 from the second round being the upper 16 bits. Further groups of eight34

subkeys are created by rotating the main key to the left 25 bits before repeating the same round35

key extraction procedure.36

IDEA has a successor, IDEA NXT (Section 3.23 on page 195), that was originally called FOX.37
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Figure 3.9: A Round of IDEA
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Figure 3.10: IDEA’s Final Half-Round

in0 in1 in2 in3

out0 out1 out2 out3

𝑘0 𝑘1 𝑘2 𝑘3

⊙ denotes multiplication modulo 216 + 1,
where the zero value represents 216.

⊞ and ⊕ denote addition modulo 216 and
bitwise XOR, respectively.

3.6.1 Design Principles1

• IDEA’s design intends to mitigate the slower diffusion typical of Feistel networks while at2

the same time keeping the latter design’s advantage of using the same data obfuscation path3

for both encryption and decryption. However, this is achieved at the price that there is linear4

function of the state that is invariant upon application of the round function. This is solved5

by applying a simple state permutation and non-linear key mixing.6

• IDEA achieves non-linearity by combining different operations on mutually “incompatible”7

algebraic structures. Indeed MA stands for multiplication-addition where multiplication is8

in the multiplicative group of the integers modulo 216 + 1 and addition is modulo 216. A9

third operation used in the cipher is bitwise XOR. Any two of these three operations do not10

satisfy any distributive or associative law.11

This incompatibility eliminates any exploitable algebraic property thus making it very diffi-12

cult – if not infeasible – to solve the cipher algebraically.13

• Modularmultiplication produces hugemathematical complexitywhile consuming very few14

clock cycles on modern processors. It thus greatly contributes to security and efficiency of15

the cipher. The use of themodulo 𝑝 = 216+1 is very ingenious, since being 𝑝 prime, modular16

multiplication by a fixed value in the set 𝒮 = [1, .., 𝑝 − 1] is a biijection on the set of values17

in the same set 𝒮 – and all the values in the set are represented in just 16 bits by using the18

zero value to represent 𝑝 − 1 = 216.19

• All operations and values depend on the input, the secret key, and the choice of register sizes20

– no fixed constants are combined with the input, not even “nothing upmy sleeve numbers.”21

• Key schedule is kept very simple, leaving the burden of the confusion of the key bits mostly22

to the data obfuscation path.23
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3.6.2 Cryptanalysis1

The key schedule is themainweakness of the cipher since keyswith toomany zeros and ones or2

long repeating patterns lead to predictable modular multiplications. As a consequence several3

classes of weak keys have been identified, that reduce the security somewhat. However, the4

cipher per se is not broken. Until recently, the best cryptanalytic results so far just shave one5

bit of security out of a reduced 6-round version of the cipher [BDK07a] (see also [BNPV02,6

NPV03, BDKS11]). At Eurocrypt 2012 Dmitry Khovratovich, Gaëtan Leurent, and Christian7

Rechberger [KLR12] presented an important breakthrough in IDEA cryptanalysis: they break8

the first six rounds with memory 241 and time 2118.9, 7.5 rounds with memory 252 and time9

2123.9, and full IDEA with memory 252 (259) and time 2126.06 (2125.97).10

On the occasion of the expiration of the European patent protecting IDEA, Pascal Junod wrote11

in his blog (http://crypto.junod.info/2011/05/) :12

IDEA is really an amazing block cipher and definitely deserves a seat in the Crypto Hall13

of Fame. [...] One salient feature of the IDEA block cipher is that, despite its (too) simple14

key-schedule, it has withstood 20 years of intense cryptanalysis, and IDEA is therefore a15

prominent counter-example to Shamir’s law (“A cipher is generally broken after 13 years”).16

In summary, IDEA remains a very nice piece of engineering!17

3.6.3 Advantages18

IDEA leads to very compact and quite fast SW implementations. See for instance “IDEA in 44819

bytes of 80x86” at http://cypherspace.org/adam/rsa/idea.html.20

3.6.4 Disadvantages21

• IDEA has a large class of weak keys.22

• It requires separate HW or at least considerable additional resources to support encryption23

and decryption.24

• Decryption is often slower or requires the use of a large precomputed table, mostly because25

of the key schedule. Whereas the key schedule can be run in parallel with encryption, about26

2/3 of the round keys must be inverted modulo 216 + 1.27

• Whereas in SW it is possible to attain very good performance, the multiplication unit takes28

significant area in HW, and other ciphers rely on more economical ways to attain non lin-29

earity.30

3.6.5 Intellectual Property31

Ascom Tech AG, the owned of IDEA, and the Kudelski group later created the MediaCrypt32

joint venture in November 1999, to whom the rights of IDEA were transferred. MediaCrypt33

was tmerged with Nagravision S.A. in November 2006.34

The name IDEA is trademarked. The following patents covered aspects of IDEA: U.S. Patent35

5,214,703, EU Patent EP0482154, and Japan Patent JP322544B2.36
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3.6. IDEA

Figure 3.11: A Round of MESH-64
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Figure 3.12: A Round of MESH-96
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3.6.6 MESH1

Jorge Nakahara Jr., Vincent Rijmen, Bart Preneel and Joos Vandewalle designed MESH, a fam-2

ily of ciphers strongly inspired by IDEA [JRPV03]. The main differences are the variable block3

size (64, 96 and 128 bits) and the larger MA-boxes: just as the IDEA MA-box combines mul-4

tiplications and additions in a 2 × 2 checkerboard pattern, the MESH MA-boxes combine the5

same operations in a similar way, but in larger grids. Figure 3.11 and Figure 3.12 represent6

rounds of MESH-64 and MESH-96, respectively. MESH-128 is similar to MESH-96, but it has7

eight branches instead of six, and the MA-box is a 4 × 4 addition/multiplication checkerboard8

instead of 3 × 3.9

The even rounds differ from the odd rounds only in the order of multiplications and additions10

for the key mixing in the first “row” of the round. The ciphers, like IDEA, undo the branch11

permutation and perform a final keymixing in the last round. The number of rounds ofMESH-12

64, MESH-96, and MESH-128 is 8.5, 10.5 and 12.5 respectively.13

The key schedule of MESH is more complex than that of IDEA, in order to prevent weak keys:14

First, several constants 𝑐𝑖 are generated as powers of an element of 𝔽216 ; The first eight 16-bit15

subkeys are just obtained by XORing the 16-bit words of the master key with the first eight con-16

stants; Each successive subkey is obtained by a recursive function that combines XOR, addition17

modulo 16, a fixed cyclic shift and addition of a constant 𝑐𝑖. A weakness that the cipher shares18

with IDEA is that multiplicative inverses of several subkeys are required.19

Jorge Nakahara Jr., Bart Preneel and Joos Vandewalle prove in [JPV04] that attacks that have20
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been proved effective against IDEA are less effective against MESH. There are currently no1

attack on the full MESH ciphers.2

For more details we refer to the paper.3

3.7 The CAST Family4

The name of the CAST block cipher family comes from initials of the two authors: Carlisle5

Adams and Stafford Tavares. During the late ’80s and early ’90s Adams and Tavares did con-6

siderable research in various aspects of block cipher design [AT89, AT90a, Ada90, AT93], cul-7

minating in 1992-93 with the first ciphers to be used in Bell-Northern and Entrust Technologies8

products: CAST-1 and CAST-2 [Ada98]. Between 1993 and 1995 CAST-3 and CAST-4 were de-9

veloped. CAST-3 introduced refinements to the key schedule (cf. [Ada94]), and CAST-4, with10

refinements in S-box construction, is the direct precursor of CAST-5, known also as CAST-128.11

The design procedure is described in a paper by Carlisle Adams [Ada97], that is also avail-12

able online at http://cryptome.org/jya/cast.html and derives fromCarlisle Adams’s Ph.D. The-13

sis [Ada90].14

The design strategy was to ensure that the ciphers possessed certain desirable cryptographic15

properties such as avalanche [Fei73, FNS75], Strict Avalanche Criterion (SAC) and Bit Indepen-16

dence Criterion (BIC) [WT85]1, and an absence of weak and semi-weak keys [JRS88, Cop85,17

MS86a, MS86b].18

The CAST ciphers were the first to use large S-boxes to allow the F-function to have ideal19

avalanche properties, and to use bent functions in the S-box columns.20

In our presentation we shall skip the first four ciphers of the family and present its two most21

mature members: CAST-128 and CAST-256.22

3.7.1 CAST-12823

Introduced in 1996, CAST-128 is the fifth member of the CAST family, but also its first widely24

known design.25

The block size is 64 bits, key sizes range from 40 to 128 bits. The structure is a Feistel network26

with 12 or 16 rounds. Components include large 8 × 32 − 𝑏𝑖𝑡 S-boxes based on Bent functions27

and a construction due to KaisaNyberg [Nyb91] (see also [AT90b]) a variable key dependent ro-28

tation (similarly to RC5) and the use of modular addition and subtraction, and XOR operations.29

The three F-functions are similar to each other, and differ only in the order of the functions30

used to mix the round key and the outputs of the S-boxes, as shown in Figure 3.13.31

CAST-128 is designed for efficient SW implementation on 32-bit architectures.32

The key schedule determines both the round key 𝑘𝑖 and the 5-bit rotation key 𝑟𝑖. It is similar to33

the TEA key schedule in that it uses magic constants that are repeatedly added to parts of the34

secret key, but also processes these results through the F-functions. The rotation keys are an35

arithmetic progression modulo 32.36

1The bit independence criterion states that output bits 𝑗 and 𝑘 should change independently when any single
input bit 𝑖 is inverted, for all 𝑖, 𝑗 and 𝑘.
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Figure 3.13: The CAST F-function
The triple (⊛, ⊙, ⊚) of operations takes the three values (⊞, ⊕, ⊟), (⊕, ⊟, ⊞) and (⊟, ⊞, ⊕).
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3.7.2 CAST-2561

CAST-256 (also known as CAST-6), presented in 1998, doubles the block size to 128 bits and2

accepts keys ranging in lengths from 128 to 256 bits in 32-bit increments. It is described in RFC3

2612, and was presented at the First AES Candidate Conference [Ada98].4

The design is a four-branch Type 1 generalized Feistel network, with 32-bit branches. The same5

three variants of F-function of CAST-128 are used cyclically, so the same configuration of oper-6

ations repeats every 12 rounds. The cipher consists of 48 rounds, but there is an elegant trick:7

The last 24 rounds are the inverse as the first 24 rounds, with only the key schedule being differ-8

ent. Therefore the same SW or the same HW can be used for both encryption and decryption.9

This idea is similar to the design of the ENIGMAmachine, where the second half of the encryp-10

tion process is the inverse of the first half, and is also one of the key design choices in the recent11

cipher PRINCE (Section 3.35 on page 217).12

3.7.3 Cryptanalysis13

The ciphers of the CAST family have shown good resistance against various types of cryptanal-14

ysis. This is a consequence of their sound design, well founded on extensive theory.15

In [WWCH10] differential cryptanalysis is used to attack 8-round CAST-128 with key sizes16

greater than or equal to 72 bits and 9-round CAST-128 with key sizes greater than or equal17

to 104 bits.18

Currently, the best public cryptanalysis of CAST-256 [BLNW12] is a zero-correlation cryptanal-19

ysis breaking 28 rounds with 2246.9 time and 298.8 data.20
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3.7.4 Advantages and Disadvantages1

CAST-128 and CAST-256 offer decent performance, but not extraordinary. CAST-128 has a 64-2

bit block size, which for some applications may be viewed as too short.3

The performance of CAST-256 is not impressive: Among all the ciphers submitted to the AES4

contest CAST-256 felt roughly in the middle, coming after Twofish, Rijndael, Crypton, E2, Mars5

and RC6 on several architectures [SKW+98a].6

The non optimal key schedule also offers limited key agility.7

3.7.5 Remark8

In our opinion there is a missed opportunity for higher parallelism in CAST-256, as the design-9

ers could have chosen a Type-2 Feistel network.10

3.7.6 Intellectual Property11

The CAST-128 design, including the idea of using different F-functions, where the main mixing12

operations (addition and subtraction modulo 232, and bitwise XOR) are permuted, is patented13

by Entrust Technologies. U.S. Patent 5,825,886A expires on 11/01/2015, and is also published14

as Canada Patent 2,164,768A1. This covers the use of the same F-functions in CAST-256 as well.15

We note that Entrust Technologies has generously released the algorithms for free use.16

3.8 The SAFER Family of Ciphers17

I have many times used the discrete exponential or the discrete logarithm as nonlinear cryp-18

tographic functions and they have never let me down.19

James Massey, as quoted by Serge Vaudenay in [Vau94]20

JamesMassey is the principal designer behind the SAFER family of block ciphers. The acronym21

SAFER means Secure And Fast Encryption Routine.22

3.8.1 SAFER (S)K-64 and (S)K-12823

The original version, SAFER K-64, introduced in 1993 [Mas93] had a 64-bit key size. One year24

later a 128-bit key version, called SAFER K-128, was introduced [Mas94]. Both versions have a25

block size of 64 bits. The development of these ciphers were sponsored by Cylink Corporation.26

Similarly to IDEA, this is an iterative substitution-permutation design which is not a Feistel27

network.28

The round function, represented in Figure 3.14 on the next page, consists of: key mixing, a29

substitution layer, a second keymixing, and three layers of pseudo-Hadamard Transformations30

(PHT) interleaved with state shuffles. The PHT can be rewritten as31

𝐿(𝑥, 𝑦) = (2𝑥 + 𝑦 mod 256, 𝑥 + 𝑦 mod 256) . (3.1)

All values are just eight bits wide, including the subkeys 𝑘(0)
𝑖 , … , 𝑘(7)

𝑖 . The PHTs serve to rapidly32

achieve the desired diffusion of small changes in the plaintext or the key over the resulting33
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Figure 3.14: A Round of SAFER
Keys with upper indexes (0) to (7) are fed to columns 0 to 7, respectively.
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ciphertext. SAFER K-64 consist of six such rounds.1

The exp operation denotes modular exponentiation of 45 to the input, modulo 257 = 28 + 1,2

where the zero input is not admitted and the zero value represents 256 (modulo 257) – in other3

words exp(𝑎) = (45𝑎 mod 257) mod 256.4

The log operation is defined as the inverse of the exp operation, i.e. the discrete log modulo 2575

to the base of 45, where log(0) = 128 because the zero byte represents −1 modulo 257 in the6

exp operation.7

With respect to IDEA the parallelism is increased, but lookup tables or hardwired S-boxes must8

be implemented.9

We have mentioned in Subsection 2.1.10 on page 90 Kaisa Nyberg’s result on this type of S-10

boxes. Her result implies that the exp S-box has differential uniformity 2 in 𝔽257, but a simple11

computer program shows immediately this S-box has differential uniformity 2 in ℤ/256ℤ as12

well – and therefore it plays optimally with the dominant operation used in the cipher, namely13

the modular addition modulo 256.14
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3.8.2 Key Schedules1

In the original version of SAFER K-64, the first 64-bit round key was the key itself. Successive2

round keys are generated by applying a circular left shift of three bits to each byte of the master3

key, and then XORing the result with fixed round constants. The round constants serve to4

address weaknesses in the IDEA key schedule, which consisted in simple bit field extraction5

from the master key.6

The 128-bit key schedule for SAFER K-128 is similar to the original key schedule, with the keys7

coming alternatively from the two halves of the 128-bit key in such a way that, when the the8

two halves of the key are identical, the round keys coincide with those produced by the key9

schedule for SAFER K-64 – to guarantee backwards compatibility, in a way similar to the use10

of single-key triple-DES. This key schedule was proposed by the Special Projects Team of the11

Ministry of Home Affairs, Singapore.12

Some weaknesses were found by Lars Knudsen [Knu95b, Knu00] and Sean Murphy [Mur98].13

This lead to the revision of the key schedule, giving rise to SAFER SK-64 and SAFER SK-128,14

where the SK means strengthened key schedule. The announcement was posted to the USENET15

newsgroup sci.crypt.research by Lars Knudsen on behalf of James Massey [Knu95a]. The new16

key schedule, designed by Lars Knudsen, first augments the eight bytes of the 64-bit key by17

a ninth byte equal to the XOR of the first eight. Then, the nine individual bytes are cyclically18

rotated at each round as in the original key schedule, but then they are also cyclically permuted19

among each other. Finally, the first eight bytes are chosen and XORed with round constants to20

obtain the current round key.21

The SK-128 key schedule works in the same way, separately and in parallel on the two halves22

of the 128-bit key.23

3.8.3 SAFER+ and SAFER++24

Two further variants were designed byMasseywith the assistance of Armenian cryptographers25

Gurgen Khachatrian (American University of Armenia) and Melsik Kuregian. These variants26

have made changes to the main encryption routine, mostly in the way the various sub values27

are shuffled between the modular addition layers. We briefly describe these next:28

• SAFER+, with block size of 128 bits, was submitted to the AES contest [MKK98].29

It is basically a “doubling” in size of SAFER-K64: it features the same alternance of “exp”30

and “log” S-boxes, sandwiched between two rounds of round key mixing based on modu-31

lar addition and bitwise XOR, and four layers of PHTs (in place of three) interleaved with32

shuffles to guarantee diffusion.33

The shuffle at the basis of the design is the “Armenian shuffle”, given by34

(8 11 12 15 2 1 6 5 10 9 14 13 0 7 4 3)

(we decremented the original numbers to follow our zero-based indexing for bundles).35

The shuffles between the three PHT layers in the reference implementation submitted to the36

AES contest look, however different from each other, which may be a consequence of some37

optimisations.38

In the description of the cipher thematrix𝑀 corresponding to the diffusion layer is explicitly39
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given: with respect to SAFER’smatrix (see Subsection 1.8.3 on page 46) there are no columns1

predominantly filled with elements divisible by higher powers of 2, therefore reducing the2

likelihood that an attacker can build useful linear or differential characteristics.3

The key schedule is simple: first the XOR of all key bytes is appended to the key, then at4

each round the expanded key is rotate by 11 bits, and the first 16 bytes of the key are then5

extracted and XORed with fixed constant before being used as keys.6

The cipher was not selected as a finalist.7

Bluetooth uses custom algorithms based on SAFER+ for key derivation (called E21 and8

E22) and authentication as message authentication codes (called E1), but not for encryption.9

Apart from the use in Bluetooth, SAFER+ is deprecated, and superseded by SAFER++.10

• SAFER++ [MKK00], submitted to the NESSIE project in two versions, with 64- and 128-bit11

block sizes.12

The main new feature of SAFER++ is a the use of a 4-point PHT transform in place of the13

2-point PHT transform that was used previously in the SAFER family. A single 4-point PHT14

can be implemented with six modular additions, and replaces four 2-point PHTs, which15

require two modular additions each, leading to a speed up. Another consequence of the16

redesign of the diffusion layer is improved security: the corresponding matrix has most17

entries equal to 1 and a minority of entries equal to 2 or 4, with at most one 4 and at most18

five 2’s, making even more difficult for an attacker to build useful characteristics.19

The key schedule is essentially the same as that of SAFER+.20

A round of SAFER++ is depicted in Figure 3.15.21

3.8.4 Remarks22

Generally speaking, themembers of the SAFER family have not been successfully cryptanalysed23

in their full round versions. This type of design has proven quite robust.24

Despite the fact that SAFER dispenses with modular multiplications to use fixed S-boxes, it is25

noteworthy to observe that:26

• There are just two different S-boxes – and this is probably motivated by the fact that, being27

the cipher not related to a Feistel-network, an S-box must be either self-inverting or there28

must be two of them, inverting each other. This is in stark contrast with contemporary cipher29

designs that use several S-boxes, such as DES, and predates more modern designs.30

• These are simple S-boxes, that input and output the same number of bits, in other words31

they are not parametrized by additional input (such as in DES). This also predates recent32

lightweight and secure designs.33

Bruce Schneier warned in 1996 against the use of SAFER: In [Sch96], Section 14.4, he wrote34

“SAFER was designed for Cylink, and Cylink is tainted by the NSA,” in turn citing as its source James35

Bamford andWayneMadsen’s book The Puzzle Palace [BM95]. He continues: “I recommend years36

of intense cryptanalysis before using SAFER in any form.” In February 2003 Cylink was acquired by37

SafeNet, one of the largest suppliers of encryption technology to the United States Government.38
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Figure 3.15: A Round of SAFER++
Keys with upper indexes (0) to (15) are fed to columns 0 to 15, respectively.
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3.8.5 Cryptanalysis1

SAFER is a cipher that has withstood cryptanalysis very well, despite some problems in the2

key schedules and suboptimality of the diffusion layers. Indeed, Schneier’s warnings may have3

been in vain. The robustness of SAFER (and of it variants) is probably to be attributed to the4

use of S-boxes with very good linear properties “on the right bits.” This is exemplified by Serge5

Vaudenay’s analysis of the original cipher.6

Aswementioned in Subsection 1.8.3.1 on page 47, Serge Vaudenay in his treatment of multiper-7

mutations [Vau94] observes that the PHT in SAFER is not a multipermutation. This is used by8

Vaudenay to construct linear characteristics for the cipher. Denote by 𝐿𝑖(𝑥, 𝑦) the 𝑖-th output of9

𝐿(𝑥, 𝑦). Observe that some information about 𝐿(𝑥, 𝑦), namely the least significant bit of the first10

output, only depends on 𝑦 and not on 𝑥, more precisely ⟨𝐿1(𝑥, 𝑦), 1⟩ = ⟨𝑦, 1⟩. By following how11

the least significant bit of the inputs to the “exp” S-box gets transformed through the cipher,12

Vaudenay derived conditions on the S-boxes for a linear characteristic to have sufficiently hight13
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probability to be used in a linear attack: The complexity of the attack is about 16/(2𝑞)20 where1

𝑞 denotes the bias 𝒫 [⟨𝑥, 1⟩ = ⟨𝛾(𝑥), 1⟩] − 1/2 for a eight-bit S-box 𝛾. Vaudenay’s attack is faster2

than brute force for about 6.6% of all S-boxes (these are the S-boxes for which |𝑞| > 2−4), and3

for for only 9.9% of all S-boxes it is 𝑞 = 0, which this is the case for Massey’s exp S-box. This4

allows linear cryptanalysis of four-round reduced SAFER when the S-boxes are changed with5

highly biased ones.6

SAFER is one of the very few cipher families where differences for the purpose of differential7

cryptanalysis are computed according to an operation different than the bitwise exclusive or: In8

Lars Knudsen and Thomas Berson’s paper [KB96, Knu00], differences are computed bytewise9

with respect to subtractionmodulo 256; their attack is also one of the few instances of truncated10

differential attacks in the literature.11

Yupu Hu, Yuqing Zhang, and Guozhen Xiao in [HZX99] show some integral characteristics12

that have higher probability than the differential characteristics found so far, but no concrete13

attacks are presented.14

The results of the attacks on the variousmembers of the SAFER family are compared in Table 3.115

on the next page. The best attacks on SAFER++ break 5.5 rounds of the cipher (out of 7 and 1016

for the key size of 128 and 256 bits respectively). They are due to Alex Biryukov, Christophe17

De Cannière and Gustaf Dellkrantz [BCD03a, BCD03b] for SAFER++128 and to Jingyuan Zhao,18

Meiqin Wang, Jiazhe Chen, and Yuliang Zheng [ZWCZ12a, ZWCZ12b] for SAFER++256. One19

of the weaknesses of SAFER++ exploited in the attack by Biryukov et al. is the following: If the20

(arithmetic) input difference to the linear layer is of the form21

(𝑎, 𝑏, 𝑐, 𝑑, 𝑎, 𝑏, 𝑐, 𝑑, 𝑎, 𝑏, 𝑐, 𝑑, 𝑎, 𝑏, 𝑐, 𝑑)

for any eight-bit values 𝑎, 𝑏, 𝑐, and 𝑑, then the output difference will be of the form22

(𝑥, 𝑦, 𝑧, 𝑡, 𝑥, 𝑦, 𝑧, 𝑡, 𝑥, 𝑦, 𝑧, 𝑡, 𝑥, 𝑦, 𝑧, 𝑡)

and the S-box structure will preserve this type of output – this means that only key mixing23

by XOR can disrupt this pattern. Also, the S-boxes of the SAFER are constructed using expo-24

nentiations and logarithms as described previously, and the following mathematical relations,25

observed by Lars Knudsen in [Knu00] hold:26

exp(𝑎) + exp(𝑎 + 128 mod 256) = (45𝑎 mod 257) + (45𝑎+128 mod 257) mod 256 = 1 mod 256
log(𝑎) − log(1 − 𝑎 mod 257) ≡ 128 mod 256 .

In particular, these relations allow Biryukov et al. to construct boomerangs.27

3.8.6 Advantages28

Like IDEA, SAFER does not combine its inputs with hardwired constants, except for the S-29

boxes, which are designed in a very restrictivemathematical fashion and thus should be beyond30

suspicion. It offers good performance, especially in software.31

155



CHAPTER 3. BLOCK CIPHERS

Table 3.1: Cryptanalysis of the SAFER Cipher Family – Published Results

Cipher / Rounds Attack Complexity
/ Key Size Attacked Technique Data Time Memory Keys Reference

K / 64 5/6 Truncated diff. (CPA) 236 261 232 All [KB96, Knu00]
K / 64 5/6 Truncated diff. (CPA) 246 246 232 All [KB96, Knu00]
K / 64 5/6 Related-key trunc. diff. 229 261 232 All [KSW96]
K / 128 5/6 Truncated diff. (CPA) 239 264.1 224 All [KB96, Knu00]
SK / 64 5/6 Linear (CPA) 258 280 – 2−10 [JPV00]
SK / 64 3.75/6 Impossible diff. (CPA) 245 242 238 All [ZWY10]
+ / 128 2.75/7 Impossible diff. (CPA) 264 258 2104 All [JP03]
+ / 128 3.75/7 Impossible diff. (CPA) 278 275 268 All [ZWY10]
+ / 128 4/7 Linear (CPA) 298 2160 – 2−10 [JPV00]
+ / 128 4/7 Impossible diff. (CPA) 2122.4 2121 287.4 All [ZWCZ12a, ZWCZ12b]
+ / 256 4/7 Impossible diff. (CPA) 2122.4 2216 289.4 All [ZWCZ12a, ZWCZ12b]
++ / 128 2.75/7 Impossible diff. (CPA) 264 258 2104 All [JP03]
++ / 128 3/7 Linear (KPA) 233 2121 232 2−6 [JPV01]
++ / 128 3/7 Integral (CPA) 216 216 216 All [PQ03]
++ / 128 3/7 Linear (KPA) 233 2121 232 2−6 [JPV01]
++ / 128 3/7 Multiset (CCA) 216 216 24 All [BCD03a, BCD03b]
++ / 128 3.75/7 Impossible diff. (CPA) 278 266 262 All [ZWY10]
++ / 128 4/7 Integral (CPA) 264 2112 264 All [PQ03]
++ / 128 4/7 Integral (CPA) 264 2120 216 All [PQ03]
++ / 128 4/7 Multiset (CPA) 248 270 248 All [BCD03a, BCD03b]
++ / 128 4/7 Boomerang (CP/ACC) 241 241 240 All [BCD03a, BCD03b]
++ / 128 4.5/7 Multiset (CPA) 248 294 248 All [BCD03a, BCD03b]
++ / 128 5/7 Impossible diff. (CPA) 2124 2118 297 All [ZWCZ12a, ZWCZ12b]
++ / 128 5/7 Boomerang (CP/ACC) 278 278 248 All [BCD03a, BCD03b]
++ / 128 5.5/7 Boomerang (CP/ACC) 2108 2108 248 All [BCD03a, BCD03b]
++ / 256 3/10 Linear (KPA) 233 2121 232 2−6 [JPV01]
++ / 256 4/10 Integral (CPA) 264 2144 264 All [PQ03]
++ / 256 4/10 Linear (KPA) 281 2178 232 2−13 [JPV01]
++ / 256 4/10 Linear (KPA) 291 2167 232 2−11 [JPV01]
++ / 256 5.5/10 Impossible diff. (CPA) 2124 2246 297 All [ZWCZ12a, ZWCZ12b]

3.8.7 Disadvantages1

Encryption and decryption are different enough to require considerably more code or area to2

support both with respect to an implementation that supports only encryption.3

3.8.8 Intellectual Property4

Regarding SAFER, we quoteMassey from [Mas94]: “Although our design of SAFER K-64 was spon-5

sored by Cylink Corporation (Sunnyvale, CA, USA), Cylink has explicitly relinquished any proprietary6

rights to this algorithm. This largesse on the part of Cylink was motivated by the reasoning that the com-7

pany would gain more from new business than it would lose from competition should many new users8

adopt this publicly available cipher. SAFER K-64 has not been patented and, to the best of our knowl-9

edge, is free for use by anyone without fees of any kind and with no violation of any rights of ownership,10

intellectual or otherwise.”11

At the First Advanced Encryption Standard Candidate Conference, the designers of SAFER+12

stated “Cylink relinquishes all proprietary rights to SAFER+ and consigns this algorithm to the public13
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Figure 3.16: The Structure of Blowfish
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domain” [MKK98]. The NESSIE submission for SAFER++ [MKK00] contains the same sentence1

with SAFER++ replacing SAFER+.2

3.9 Blowfish3

Bruce Schneier designed the block cipher Blowfish in 1993 [Sch93] as a drop-in replacement for4

DES or IDEA. The cipher enjoys widespread usage. It has a 64-bit block size and a variable key5

length from one bit up to 448 bits. It is a 16-round Feistel cipher.6

Notable features of the design include key-dependent wide S-boxes and a highly complex key7

schedule – similar to RC5 key expansion. The F-function resembles that of CAST family (Sec-8

tion 3.7 on page 148), but there are some important differences: the CAST S-boxes are fixed,9

whereas those of Blowfish are generated from the secret key, and the CAST F-function appears10

in three different variants that are used cyclically, whereas the Blowfish F-function has only11

one form.12

The structure of Blowfish (without the details of the key schedule) in Figure 3.16 and its round13

function is depicted in Figure 3.17.14

The key schedule is actually a key expansion procedure that turns 32 to 448 bits into a 576 bits15

array from which the 18 32-bit round keys 𝑘1, … , 𝑘18 are extracted. The key schedule uses the16

Blowfish encryption primitive with the key expansion buffer initially initialized with digits of17

𝜋 (therefore these are “nothing up my sleeve numbers”).18
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Blowfish provides a good encryption rate in software and no effective cryptanalysis of the full-1

round version has been disclosed to date.2

3.9.1 Cryptanalysis3

No no effective cryptanalysis of the full cipher has been found (or disclosed) to date.4

Vincent Rijmen has shown that four rounds of Blowfish are susceptible to a second-order dif-5

ferential attack [Rij97]; Serge Vaudenay at FSE 1996 has proven that, for a class of weak keys, 146

rounds of Blowfish can be distinguished from a pseudorandom permutation [Vau96].7

3.9.2 Advantages8

Much faster than many other ciphers such as DES (Section 3.2 on page 129) and IDEA (Sec-9

tion 3.6 on page 144) once the key expansion has been performed.10

Decryption and encryption are essentially the same circuit, since it is a canonic Feistel network.11

It can be implemented with very compact code.12

3.9.3 Disadvantages13

Lack of internal parallelism reduces optimisation opportunities.14

The key expansion runs the Blowfish algorithm 521 times, hence it takes about the same time15

as compressing a 4K block. For many purposes this is a deal-breaker.16

3.9.4 Successors17

Blowfish’s has two more modern successors: Twofish (Section 3.13 on page 164) and Three-18

fish (Section 3.30 on page 207). SPECK (Section 3.36 on page 222) borrows some aspects from19

Threefish.20

3.9.5 Intellectual Property21

At the timeBlowfishwas released,manyother designswere proprietary, encumbered bypatents22

or were secret. Schneier hence stated “Blowfish is unpatented, and will remain so in all countries.23

The algorithm is hereby placed in the public domain, and can be freely used by anyone.”24

3.10 RC525

RC5, developed by Ron Rivest in 1994 and published in 1995 [Riv94], is a still widely used block26

cipher. It is notable for its extreme simplicity and flexibility.27

Key sizes can vary from 0 to 2048 bits (with 128 being the most common value) and the block28

sizes can be 32, 64 or 128 bits (64 being the recommended value).29

RC5 consists of three algorithms: key expansion, encryption, and decryption.30

The encryption algorithm is an iterative cipher, where a round is repeated 𝑟 times with 1 ⩽31

𝑟 ⩽ 255 (𝑟 = 12 being the originally suggested value). The design is a kind of Feistel network,32

where one round – depicted in Figure 3.18 on the facing page – can be split into two Feistel-like33

halves, each of which consists of XOR, a variable rotation and a modular addition.34
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Figure 3.18: A Round of RC5
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The use of XOR and modular addition follows the principle of achieving non linearity by using1

mutual incompatible algebraic structures, whereas the variable rotation aims at providing un-2

predictable diffusion. The input that determines the amount of variable rotation is explicitly3

marked as such in the Figure. Note that 𝑆[] is an array of expanded keys. The rounds are num-4

bered from 1 to 𝑟. Before the first round, 𝑆[0] and 𝑆[1] are added to the two halves of the state.5

Hence, 𝑡 ∶= 2𝑟 + 2 round key words are required.6

Decription is just encryption in reverse.7

The AES submission RC6 (see Section 3.15 on page 168) is an evolution of RC5.8

3.10.1 Key Expansion9

The key schedule is actually called key expansion for RC5. It is a complex function that essentially10

fills a key array 𝑆 with a PRNG seeded by the secret key.11

The first step is initialization. The array 𝑆 is filled as follows: the first element 𝑆[0] is the trun-12

cated binary expansion 𝑃 of Napier’s constant 𝑒, and then the truncated binary expansion 𝑄 of13

the Golden Ratio 𝜑 is successively added to obtain all other entries (continuing a trend to use14

constants above suspicion), i.e. 𝑆[𝑖] = 𝑆[𝑖 − 1] + 𝑄. Also, the key is copied into an array 𝐿.15

The second step is the key mixing stage. Both arrays 𝑆 and 𝐿 are mixed in several passes, using16

modular additions and both fixed and input dependent rotations. First, two constants 𝐴, 𝐵 and17

two indexes 𝑖, 𝑗 are all set to zero. Then, the following operations are repeated 3𝑡 times, where18

𝑡, as defined above, is the size of 𝑆.19

𝐴, 𝑆[𝑖] (�𝑆[𝑖] + (𝐴 + 𝐵))� ⋘ 3
𝐵, 𝐿[𝑗] (�𝐿[𝑗] + (𝐴 + 𝐵))� ⋘ (𝐴 + 𝐵)

𝑖 (𝑖 + 1) mod 𝑡
𝑗 (𝑗 + 1) mod 𝑐

(Note that these operations are not performed simultaneously, but sequentially in the displayed20
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order.) As a consequence, the key schedule is more expensive than encryption/decryption.1

3.10.2 Cryptanalysis2

12-round RC5 (with 64-bit blocks) is susceptible to a differential attack using 244 chosen plain-3

texts [BK98b]. 18 to 20 rounds are now suggested as sufficient protection.4

Distributed.net has also organized distributed brute force attacks on RC5. Distributed.net has5

brute-forced RC5 messages encrypted with 56-bit and 64-bit keys, and is working on cracking6

a 72-bit key; as of July 31, 2013, 2.909% of the keyspace has been searched. At the current rate,7

it will take approximately 120 years to search the whole key space.8

3.10.3 Advantages9

The design is extremely simple and leads to SW implementations that are very fast (provided10

a barrel shifter is available) and very compact.11

Decryption and encryption require different SW or HW, but since most of the complexity is12

in the key schedule and the data obfuscation paths are very small, it it possible to support13

decryption beside encryption with little additional resources. Another consequence is that the14

cipher is very attractive if used with a mode of operation that keeps the same key.15

3.10.4 Disadvantages16

In HW the complexity of a large barrel shifter can make implementations larger than desirable.17

Because of the relatively heavy key schedule, RC5 is less attractive than other ciphers with18

modes of operations that require key agility. Using 64-bit blocks, 128-bit keys and 16 rounds,19

key setup has a cost comparable to encrypting 25 blocks, i.e. about 200 bytes. This is roughly20

20 times faster than the Blowfish key schedule.21

3.10.5 Intellectual Property22

RC5 is patented: U.S. Patent 5,724,428 and U.S. Patent 5,835,600 expire on 01.11.2015.23

3.11 SQUARE24

SQUARE is a block cipher invented by Joan Daemen and Vincent Rijmen. The design was pub-25

lished in 1997 [DKR97]. It was introduced togetherwith a new form of cryptanalysis discovered26

by Lars Knudsen, called the square attack, now known as integral cryptanalysis.27

SQUARE is a substitution-permutation network with eight rounds, operating on 128-bit blocks28

and using a 128-bit key. A 128-bit block is represented as a 4 × 4 square matrix 𝐴 of 8-bit val-29

ues, a concept that influenced the design of several subsequent ciphers, including Twofish (Sec-30

tion 3.13 on page 164) Rijndael, which has been adopted as the Advanced Encryption Standard31

(Section 3.20 on page 182), Klein (Subsection 3.37.1 on page 226), CRYPTON and mCrypton32

(Section 3.25 on page 198)33

In the case of SQUARE, a round is composed of:34

(a) A bitwise round key addition;35
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(b) A byte permutation corresponding to a transposition of the matrix;1

(c) A nonlinear substitution layer, where an single 8-bit S-box (constructed by composing inver-2

sion in the field 𝔽28 with an affine operation) is applied in parallel to all 16 bytes; and3

(d) A linear transformation, where the matrix 𝐴 is multiplied by another 4 × 4 matrix 𝑀. Here4

all bytes are interpreted as elements of the field 𝔽28 . The matrix 𝑀 is the transformation5

matrix of a maximum distance separable (MDS) code. This operation is omitted from the6

last round (a common trait of wide trails ciphers, cf. Section 1.4 on page 34).7

Similar functions are also the building blocks of AES andwill be better described in that context.8

The key schedule is called in SQUARE key evolution and it is a linear process, that combines9

XOR, rotations, and XORing with fixed constants.10

3.11.1 Cryptanalysis11

The cipher has withstood cryptanalysis well. The current best analysis is a biclique cryptanal-12

ysis by Hamid Mala [Mal11] that attacks the full cipher with a data complexity of about 24813

chosen plaintexts and a time complexity of about 2126 encryptions. A related-key boomerang14

attack is presented in [BKS10] that, requiring 2123 data, is not practical.15

3.11.2 Advantages16

The code can be extremely compact, and the high internal parallelism allows high throughput.17

3.11.3 Disadvantages18

Two different circuits must be implemented for encryption and decryption. This can be opti-19

mised but only sharing a few resources. Also, the key schedule can be performed in parallel20

with encryption, but must be performed in advance for decryption.21

The biggest change between SQUARE and AES is, arguably, the key schedule. We noted the22

lack of successful cryptanalysis – but we should also remark that the cipher has not undergone23

the intense scrutiny of other ciphers. There seems therefore no rationale for using SQUARE in24

place of AES.25

3.11.4 Intellectual Property26

We are aware of no patents on SQUARE.We also note that any patent on SQUAREwould cover27

aspects of Rijndael, and Rijndael, in the words of its designers, which are also the designers of28

SQUARE, is unencumbered by patents.29

3.12 The TEA Family of Block Ciphers30

3.12.1 TEA, the Tiny Encryption Algorithm31

Roger Needham and David Wheeler designed the Tiny Encryption Algorithm (TEA) and pub-32

lished it in 1994 [WN94].33
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TEA has a block size of 64 bits and a key size of 128 bits. It is a 2-branch balanced Feistel1

network. The 32-bit branches are considered as unsigned integers. The suggested number of2

rounds is 64, typically implemented in pairs termed cycles, a cycle being depicted in Figure 3.193

on the next page. It has an extremely simple key schedule, mixing all of the key material in4

exactly the same way for each cycle: the key words 𝑘𝑖 are the four 32-bit words of the secret5

key, used cyclically. Different magic constants are added in to prevent simple attacks based6

on the symmetry of the rounds: This idea is used also by other ciphers developed after TEA,7

such as PRINCE (Section 3.35 on page 217). In this case these magic constants are consecutive8

multiples of 𝜎 = 9E3779B916𝑥, the integer part of 232/𝜑, where 𝜑 is the golden ratio (a nothing9

up my sleeve number).10

Noted for its simple design, the cipher was well studied and came under a number of attacks.11

No cipher in the TEA family is subject to any patents.12

3.12.2 Cryptanalysis of TEA13

In 1996 John Kelsey, Bruce Schneier and David Wagner [KSW96] established that the effective14

key size of TEA was 126 bits, since keys could be grouped into sets of four equivalent ones.15

Whereas this fact does not affect the security of TEA if used for the purpose of encryption, it16

considerably weakens its use to build a hash function. As a result, in the hash function used17

to verify the integrity of the flash on Microsoft’s original Xbox game console, it was possible18

to simultaneously flip two bits in a 64-bit block (for instance, the 16th and the 31st) and obtain19

the same hash value. This allowed hackers to patch a jump the flash code for the secondary20

bootloader of the XBOX in order to force the device to recover by executing a payload of their21

choice [Ste05].22

In 1997 Kelsey, Schneier and Wagner showed a related-key attack on TEA which requires 22323

chosen plaintexts under a related-key pair, with 232 time complexity [KSW97].24

Further attacks have been discovered in the meantime:25

• The best linear cryptanalysis so far is a zero correlation analysis [BW12] that breaks 2326

rounds.27

• The best differential attack breaks 17 rounds using impossible differentials [CWP12].28

3.12.3 XTEA and Block TEA29

In light of the weaknesses discovered in the original design, TEA was redesigned by Needham30

and Wheeler resulting in Block TEA and XTEA (eXtended TEA) [WN97].31

While XTEA has the same block size, key size and number of rounds as TEA, Block TEA has32

variable block size. Both TEA and XTEA are implemented in the Linux kernel [Gro04].33

A cycle (pair of rounds) of XTEA is depicted in Figure 3.19 on the next page. The value 𝛥𝑖 is34

obtained by repeatedly adding 𝜎 to itself, i.e. 𝛥𝑖 = 𝑖 ⋅ 𝜎 . The 128-bit key 𝐾 is divided into35

four 32-bit blocks 𝐾[0], … , 𝐾[3] and 𝑘𝐴,𝑖 = 𝐾[𝛥𝑖−1 mod 4], 𝑘𝐵,𝑖 = 𝐾[(𝛥𝑖 ≫ 11) mod 4]. The36

key derivation of the cipher is completed by the addition (modulo 232) of 𝛥𝑖 to the selected key37

segment. This avoids the regularity in the key schedule that was typical of TEA.38
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Figure 3.19: A Cycle – Two Rounds – of TEA (left), XTEA (center) and XETA (right)
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Jens-Peter Kaps [Kap08] observes that an ultra-low power implementation of XTEA might be1

better suited for low resource environments than AES. XTEA’s smaller block size also makes it2

advantageous if an application requires fewer than 128 bits of data to be encrypted at a time.3

Block TEA works on a block of size 𝑁 ⋅ 32 bits for 𝑁 ⩾ 2. It is a Feistel network (unbalanced4

when 𝑁 > 2) with 𝑁 branches 𝑣[0], … , 𝑣[𝑁 − 1]. A mixing function 𝑓 (𝑧) works on two adjacent5

branches (viewed cyclically) repeatedly: In fact 𝑓 (𝑧) = ((𝑧 ≪ 4) ⊕ (𝑧 ≫ 5)) + 𝑧 with 𝑧 = 𝑣[𝑝 − 1]6

is used to modify 𝑣[𝑝] for 0 ⩽ 𝑝 < 𝑁 where 𝑝 is taken modulo𝑁 (the arithmetic sum of a round7

key and a magic constant are also XORed in as in XTEA, and the mixing is in fact the same as8

in the first half of a XTEA cycle). Such a cycle is applied 6 + ⌊52/𝑁⌋ times.9

As observed by the designers, for𝑁 = 2 block TEA is twice as slow as XTEA, but for 2 ⩽ 𝑁 ⩽ 1010

the encryption time for a single block is essentially the same, hence already for 𝑁 > 4 Block11

TEA catches up and is faster than XTEA.12

3.12.4 Cryptanalysis of XTEA and Block TEA13

XTEA has not been broken so far – the only attacks are on reduced round versions of the cipher.14

The best cryptanalytic results for XTEA to date are the following:15

• In 2004, Youngdai Ko et al. presented [KHL+04] the first related-key differential attack on16

XTEA, breaking 27 out of 64 rounds with running time 2115.15 using 220.5 chosen plaintexts.17

• In 2010 Charles Bouillaguet et al. [BDLF10] show a related-key attack on 37 rounds of XTEA18

with complexity 2125, which can be extended to 51 rounds and complexity 2123 for a set of19

2107.5 weak keys. These are the best attacks so far in the related-key setting.20

• In 2011 Gautham Sekar et al. [SMVP11] present several MITM attacks on reduced round21

XTEA. These are the best attacks so far in the single key setting, breaking 15 rounds in time22

295 and 23 rounds in time 2117. These attacks work also on the cipher XETA (see below)23
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and are the first cryptanalytic results for that cipher. The paper gives also an overview of1

previous attacks on XTEA and their complexities.2

An attack on Block TEA, however, was disclosed by Markku-Juhani Saarinen in a post to the3

Usenet newsgroup sci.crypt.research in 1998 [Saa98a]. Independently of 𝑁, it is bro-4

ken using 234 chosen ciphertexts. The attack exploits the fact that the function 𝑓 (as defined in5

the previous subsection) used for the mixing is not injective. If two ciphertexts are equal with6

exception of the last words, but that have the same image under 𝑓 , then their decryption will be7

equal for the correct key guess (and the second last words will have different decryption). This8

can be used to perform a brute force search on the key word, which will be guesses in time 232.9

This has to be done for the four 32 bit words of the 128-bit key, hence the complexity 234.10

3.12.5 XXTEA11

To correct the weakness found by Saarinen in Block TEA, Needham and Wheeler designed12

Corrected Block TEA or XXTEA, and published it in a technical report [WN98].13

XXTEA is similar to Block TEA in the sense that it applies amixing function cyclically to adjacent14

branches. However, the mixing function is more complex and uses both the previous and the15

following branch in the mixing.16

An attack published in 2010 by Elias Yarrkov [Yar10] presents a chosen-plaintext differential17

cryptanalysis attack against full round XXTEA, requiring just 259 queries.18

3.12.6 XETA19

XETA was created by accident when in C implementations of XTEA higher precedence was20

incorrectly given to exclusive-OR over addition in the round function. The code21

y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);22

became23

y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];24

and this is reflected in Figure 3.19 on the preceding page, where a cycle of both XTEA and25

XETA are depicted side by side (together with TEA) in a way to underline how the mistake26

transformed XTEA into XETA. For the purpose of compatibility with these implementations,27

the Linux kernel source code includes this cipher [Gro04].28

The attacks on XTEA described in [SMVP11] apply to XETA as well. That is the only cryptanal-29

ysis of XETA disclosed so far.30

3.13 Twofish31

Twofishwas designed by Bruce Schneier, JohnKelsey, DougWhiting, DavidWagner, ChrisHall,32

andNiels Ferguson and submitted in 1998 to the AES Contest [SKW+98b]. It became one of the33

five finalists. It uses the same Feistel structure as DES (Section 3.2 on page 129). The block size34

is 128 bits and key sizes of 128, 192 or 256 bits. Twofish has a web page, with full specifications,35

free source code, and other resources.36
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Figure 3.20: A Round of Twofish
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Twofish is related to the earlier block cipher Blowfish (Section 3.9 on page 157). Twofish’s dis-1

tinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex2

key schedule. One half of an 𝑛-bit key is used as the actual encryption key and the other half3

of the 𝑛-bit key is used to generate the key-dependent S-boxes. However, a big difference with4

respect to Blowfish is that the key schedule is lighter and can be computed for the most part in5

parallel with encryption and decryption.6

One design criterionwas to achieve large parallelism in the structure, and this is reflected in the7

design of the round function. A round of Twofish is depicted in Figure 3.20. The F-function is8

essentially composed of two equal instances of a smaller function (called “𝑔”) operating on half9

of the input each, whose outputs are then mixed by a PHT, a design element borrowed from10

the SAFER (cf. Section 3.8 on page 150) family of ciphers. The function 𝑔 is itself a simple one11

round SPN: the substitution layer uses 4 different 8-bit S-boxes and it is followed by a linear12

diffusion layer based on a 4 × 4 MDS matrix over the field 𝔽28 . Round key mixing occurs after13

the PHT. There are 16 such rounds, whereby the branch swap at the end of the last round is14

omitted. The whole cipher is bracketed by pre- and post-whitening steps.15

3.13.1 Cryptanalysis16

The key dependent S-boxes of Twofish are claimed to improve the security of the cipher. How-17

ever, the literature contains several examples where the replacement of fixed S-boxes with key18

dependent S-boxes reduce the strength of block ciphers (see for example [BB94]).19

The best published cryptanalysis on the Twofish block cipher [MY00] is a truncated differential20

cryptanalysis of the full 16-round version. The paper claims that the probability of truncated21

differentials is 2−57.3 per block and that it will take roughly 251 chosen plaintexts (32 petabytes22

worth of data) to find a good pair of truncated differentials. This paper was published in the23

year 2000 and we are not aware of any further advancements since then.24

3.13.2 Remarks (Including Advantages and Disadvantages)25

There is nothing obviously wrong with Twofish: it offers good performance and has withstood26

cryptanalysis well. It probably offers a security level similar to Rijndael. Onmost software plat-27
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Figure 3.21: The two Types of Rounds in Skipjack
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forms where the AES finalists were tested, Twofish was slightly slower than Rijndael for 128-bit1

keys, but was somewhat faster for 256-bit keys. Brian Gladman’s analysis [Gla00] put it among2

the slowest AES finalists, with key schedule being particularly heavy. Other studies [GTR+07]3

show it can be much slower than RC6, Rijndael, XTEA and even Serpent.4

The design seems to be more complex than needed, and simpler designs (such as wide trail5

designs) allow for more effective analysis. David Wagner, one of the designers, in a discussion6

on sci.crypt expressed himself the opinion that Rijndael was a better cipher.7

Twofish serves also as proof that some design elements, such as the PHT andMDSmatrices are8

solid foundations for the construction of secure block ciphers.9

3.13.3 Intellectual Property10

The cipher has not been patented and the reference implementation has been placed in the pub-11

lic domain, cf. http://www.counterpane.com/twofish.html. It is one of a few ciphers included12

in the OpenPGP standard RFC 4880.13

3.14 Skipjack14

Skipjack is a block cipher designed by the U.S. National Security Agency to be used in the Clip-15

per chip for secure telecommunication. The design process started in 1987 and was finalized in16

1993, when the Clipper chipwas introduced. The Clipper chipwas not embraced by consumers17

or manufacturers and this, together with the discovery of protocol vulnerabilities, de facto18

killed the initiative by 1996. Two years later, the design of Skipjack was declassified [NIS98].19

Skipjack uses an 80-bit key to operate on 64-bit data blocks. It is an unbalanced Feistel network20

with 32 rounds. It has an elegant and efficient design, with a regular key schedule.21

One interesting feature of Skipjack is the use of two different types of rounds, which areMatsui-22

like variants of Type 4, four-branch generalised Feistel rounds (cf. § 1.3.1 on page 30). These23

are referred to as “rule A” and “rule B” rounds and encryption with Skipjack consists of first24

applying 8 rule A rounds, then 8 rule B rounds, once again 8 rule A rounds and finally 8 rule B25

rounds. The two rounds share some similarities, in that the 64-bit input is split into four 16 bit26

words, a non-linear keyed function 𝐺 is applied to one of the four words, one of the words and27

a counter are XORed to a second word, and the four words are permuted. They are depicted in28

Figure 3.21.29
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The function 𝐺 itself is a little 4 round Feistel network based block cipher which uses a simple1

8-bit S-box.2

3.14.1 Remarks3

The idea of mixing heterogeneous types of rounds has proven fruitful in more recent devel-4

opments. Not only the cipher MARS used this idea (Section 3.16 on page 169) but also the5

lightweight cipher PRINCE (Section 3.35 on page 217) uses two sequences of two types or6

rounds that are functionally the inverse of each other, and sandwiching a different operation7

in the middle. This idea is also fundamental in the design of E2 and Camellia (Section 3.18).8

The idea of using nested Feistel networks is seen again, for instance, in KASUMI (described in9

Subsection 3.18.8).10

3.14.2 Cryptanalysis11

A reduced version of Skipjack was cryptanalysed and broken within one day of declassifica-12

tion [BBD+98].13

Shortly after that, it was found that 31 rounds are susceptible to impossible differential crypt-14

analysis [BBS99a]. The attack is however only slightly faster than exhaustive search and it is15

the best cryptanalytic result so far.16

3.14.3 Advantages17

No particular advantages.18

3.14.4 Disadvantages19

Despite the lack of successful cryptanalysis, some aspects raise doubts about the strength of20

the cipher. The rounds have poor diffusion, and there is some poor interaction between round21

types. Also, in some cases a one bit difference in input to the S-box may cause a difference of22

only one bit in its output.23

Skipjack also has a much lower throughput than AES-128, while using a shorter key.24

3.14.5 Intellectual Property25

In [DL96] we read “A provision of the U.S. Code (Title 35, US Code 181) allows the Patent and Trade-26

mark Office (PTO) to withhold a patent and order that the invention be kept secret if publication of the27

patent is detrimental to national security. Relevant to cryptography is the fact that a patent application28

for the Skipjack encryption algorithm was filed on February 7, 1994. This application was examined and29

all of the claims allowed, and notification of the algorithm’s patentability was issued on March 28, 1995.30

Based on a determination by NSA, the Armed Services Patent Advisory Board issued a secrecy order for31

the Skipjack patent application; the effect of the secrecy order is that even though Skipjack can be patented,32

a patent will not be issued until the secrecy order is rescinded. Since applications are kept in confidence33

until a patent is issued, no uninvolved party can find out any information concerning the application.34

In this way, the patentability of the algorithm has been established without having to disclose the detailed35

information publicly. Since Title 35 USC 181 also provides that the PTO can rescind the secrecy order36

upon notification that publication is no longer detrimental to national security, compromise and sub-37

sequent public revelation of the Skipjack algorithm (e.g., through reverse-engineering of a Clipper chip)38
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might well cause a patent to be issued for Skipjack that would give the U.S. government control over its1

subsequent use in products.”2

The existence of this patent was reported by Tom Knight on June 3rd, 1994, on the USENET3

group sci.crypt, after Brent Morris and Mark Unkenholz from NSA confirmed it during a4

talk at the MIT. However, it has since expired.5

3.15 RC66

The block cipher RC6 is an evolution of RC5, which we described in Section 3.10 on page 158. It7

was designed by Ron Rivest with Matt Robshaw, Ray Sidney and Yiqun Lisa Yin in 1998 to be8

submitted to the AES competition [RRY00]. It became one of the five AES finalists. It was also9

submitted to the NESSIE and CRYPTREC projects.10

RC6 has a block size of ℓ = 4 ⋅ 𝑤 bits – for AES contest purposes 𝑤 = 32 is fixed so we have a11

ℓ =128-bit block size. The value𝑤 is assumed to be a power of two and 𝑤 = 2𝜈. Key lengths are12

variable. The notation RC6-𝑤/𝑟/𝑏 denotes an instance of RC6 with 𝑤 being the chosen word13

size, 𝑟 the number of rounds and 𝑏 the length of the key in bytes. The AES submission assumed14

𝑤 = 32 and 𝑟 = 20, with 𝑏 being 16, 24, or 32, corresponding to key length of 128, 192, or 25615

bits.16

Like RC5, it is a Feistel design, but with four branches instead of two and the inclusion of17

integer multiplication as an additional primitive operation, with the aim to increases the dif-18

fusion achieved per round, thus allowing for greater security with fewer rounds - resulting in19

increased throughput. Like RC5, RC6 makes essential use of data-dependent rotations. In fact,20

it is a variation on the Type 2 Feistel network, because the output of an F-function not only is21

composed with another input, but it also determines the amount of cyclic rotation of a second22

input.23

In each round the state is split into four 𝑤-bit branches, where 𝑤 = 2𝑟.24

A round of RC6 is described in Figure 3.22 on the facing page. As already said, there are 𝑏 such25

rounds, and at the end the outputs of all four branches are added to round keys. Therefore a26

total of 2𝑏 + 4 𝑤-bit round keys mush be generated. The key schedule algorithm is the same as27

in RC5, the only difference being that for RC6-𝑤/𝑟/𝑏, a different number of words (in general28

higher) are derived from the user-supplied key for use during encryption and decryption.29

3.15.1 Cryptanalysis30

The best statistical attack on RC6 by Henri Gilbert et al. [GHJV00] breaks RC6-32/14/16 and31

the best correlation attack by Knudsen and Meier [KM00b] further enables a distinguisher and32

a key-recovery attack on RC6-32/15/32.33

For a fraction of the keys called weak keys, RC6 is vulnerable to a multiple linear attack up to34

18 rounds [STK02].35

3.15.2 Advantages and Disadvantages36

BrianGladman’s analysis [Gla00] showed that RC6 had a performance advantage over the other37

AES finalists in SW. However, the key schedule is slow and put it at a disadvantage with respect38

to Rijndael.39
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Figure 3.22: A Round of RC6

The function 𝑓 is defined as the integer multiplication 𝑓 (𝑥) = 𝑥(2𝑥 + 1), truncated to 𝑤 bits.
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3.15.3 Intellectual Property1

RC6 is a patented encryption algorithm covered byU.S. Patent 5,724,428 (expires on 01.11.2015),2

U.S. Patent 5,835,600 (expires on 01.11.2015), and U.S. Patent 6,269,163 (expires on 15.06.2018).3

3.16 MARS4

MARS [BCD+98] was IBM’s submission to the AES Contest. It was designed by a quite numer-5

ous team that included Don Coppersmith. It has a 128-bit block size and a variable key size6

from 128 to 448 bits in 32-bit increments.7

MARS uses a variant of the Feistel structure which its authors call a “Type 3 Feistel network:”8

the 128-bit block is treated as four 32-bit sub-blocks; each round uses one sub-block as input9

and modifies all of the other three sub-blocks – we call this type a MARS Type-3 Feistel network10

(see Figure 1.4 on page 31, Subfigure 8), to distinguish it from the different, non-equivalent,11

definition of Type 3 generalized Feistel network due to Zheng, Matsumoto and [ZMI89] and12

also studied by Hoang and Rogaway [HR10a, HR10b].13

Like RC5 (and RC6), it uses data-dependent rotations. A single 9 × 32 S-box is used; for some14

operations it is treated as two 8× 32 S-boxes.15

Unlike most block ciphers, MARS has a heterogeneous structure: several rounds of a cryp-16

tographic core are “jacketed” by unkeyed mixing rounds, together with key whitening – this17

approach is a design idea that it shares with Skipjack (Section 3.14 on page 166). The unkeyed18

external rounds of S-box based mixing are meant to provide rapid avalanche of key bits; the19

first set of such rounds just after key pre-whitening is called “forward mixing” and the corre-20

sponding inverse operations – called “backwards mixing” are performed at the end before the21

key post-whitening. This design plays the same role as bracketing a cipher with decorrelation22
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functions (cf. Subsection 1.10.3 on page 64).1

By adopting this layered approach of heterogeneous rounds, In the words of the designers of2

MARS, this design rationale is motivated by the fact that “a cipher consisting of two radically3

different structures is more likely to be resilient to new attacks than a homogeneous cipher, since in order4

to take advantage of a weakness in one structure one has to propagate this weakness through the other5

structure. Viewed in this light, the mixed structure can be thought of as an ‘insurance policy’ to protect6

the cipher against future advances in cryptanalytical techniques.”7

Amore detailed description is found at http://www.quadibloc.com/crypto/co040406.htm.8

MARS ranked as the fifth and last AES contest finalist.9

3.16.1 Cryptanalysis10

The NESSIE project raised several doubts about the security of this cipher. The large amount of11

unkeyed rounds was considered a potential design vulnerability. The key schedule is a weak12

point ofMARS, as it was overtly complex and since round keyswith long runs of ones or zeroes13

may lead to efficient attacks on MARS, part of the design was meant to avoid that. In turn, to14

avoid timing attacks on the key schedule, the latter has to run very slowly, i.e. as the slowest15

case and in a homogeneous way, to avoid side channel attacks.16

Despite the above doubts, only a few attacks on reduced-round versions of MARS have been17

presented to date. Due to its heterogeneous structure, MARS can be downscaled in many dif-18

ferent ways. A first approach is to concentrate on the core rounds. In [BF00b], Biham and19

Furman have shown impossible differentials over 8 out of 16 core rounds. An attack breaking20

11 rounds using amplified boomerang techniques is presented by Kelsey, Kohno, and Schneier21

[KKS00, KS00]. The same authors also proposed a straight forward meet-in-the-middle attack22

on a MARS version with only five core rounds, but with full forward and backwards mixing.23

3.16.2 Intellectual Property24

IBM has filed at least one patent application on MARS, which had been granted U.S. Patent25

6,243,470. IBMhas stated that they “... are making MARS available on a royalty-free basis, worldwide,26

regardless of AES outcome.” In any case, the fee status of the patent is “lapsed.”27

3.17 Serpent28

Serpent is a block cipher designed by Ross Anderson, Eli Biham, and Lars Knudsen published29

in 1998 [BAK98]. The first version is sometimes called Serpent-0, and a tweakedversion, Serpent-30

1, became one of the five AES finalists [ABK00]. It ranked second behind Rijndael, essentially31

because of worse performance.32

Like other AES submissions, Serpent has a block size of 128 bits and supports a key size of 128,33

192 or 256 bits. It is a 32-round substitution-permutation network operating on a block of four34

32-bit words. We note that the authors chose a very conservative approach, since they consid-35

ered 16 rounds to be sufficient, yet they proposed 32 rounds in theAES submission. Each round36

applies one of eight 4-bit to 4-bit S-boxes 32 times in parallel. Serpent was designed so that all37

operations can be executed in parallel, using 32 1-bit-slices, greatly improving parallelism in38

SW implementations. Also, by suitably implementing the bit-slice technique, one can eschew39
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Figure 3.23: The Serpent Linear Mixing Stage
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table lookups, and use operations like fixed shift/rotate and logical operators instead.1

The round function in Serpent consists of (i) key-mixing by XOR, (ii) thirty-two parallel appli-2

cations of the same 4 × 4 S-box, and (iii) a linear transformation of the 128-bit output of the3

S-boxes, interpreted as four 32-bit words, as depicted in Figure 3.23. The linear transformation4

is omitted in the last round, where another key-mixing XOR takes its place.5

3.17.1 Cryptanalysis6

Serpent is considered to have a rather high security margin. The best attacks published so far7

break about 1/3 of the rounds.8

John Kelsey, Tadayoshi Kohno and Bruce Schneier [KKS00] presented a first attack breaking9

9 rounds with a time complexity slightly faster than exhaustive key search. This amplified10

boomerang attack was improved and extended by one round by Eli Biham, Orr Dunkelman11

and Nathan Keller [BDK02b]; The same authors [BDK01a] using a 9-round linear approxima-12

tion for Serpent with probability of 1/2 + 2−52 attack 10-round Serpent with all key lengths13

with data complexity of 2118 and running time 289. A variant of this approximation is used in14

the first attack against an 11-round Serpent with 192-bit and 256-bit keys, requiring the same15

amount of data and 2187 running time. Another attack that breaks 11 rounds is a differential16

analysis [BDK03].17

A 2011 attack by Hongjun Wu, Huaxiong Wang and Phong Ha Nguyen [NWW11] breaks 1118

rounds of Serpent-128 using linear cryptanalysis with 2116 known plaintexts, 2107.5 time and19

2104 memory. The same paper also describes two attacks which break 12 rounds of Serpent-256.20

The first requires 2118 known plaintexts, 2228.8 time and 2228 memory. The other attack requires21

2116 known plaintexts and 2121 memory but also requires 2237.5 time.22
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3.17.2 Advantages1

Since Serpent uses only one S-box, applied 32 times in parallel, the cipher can be implemented2

by using Eli Biham’s bit-slicing technique (cf. Subsection 3.2.7 on page 133), thus avoiding table3

lookups.4

The small S-box can help make HW implementations compact.5

Reduced round versions could give good performance and acceptable security in constrained6

environments.7

3.17.3 Disadvantages8

Optimised SW implementations are larger than RC6, Rijndael, Twofish and XTEA [GTR+07],9

even if the S-box code is left in its own functions and not inlined. In general, SW implementa-10

tions, especially in constrained environments, are slower than competing ciphers.11

3.17.4 Intellectual Property12

Quoting from http://www.cl.cam.ac.uk/∼rja14/serpent.html: “Serpent is now completely in the13

public domain, and there are no restrictions on its use. This was announced on the 21st August 2000 at14

the First AES Candidate Conference.”15

3.18 Camellia16

Camellia is a 128-bit block cipher jointly developed by Mitsubishi and NTT and first presented17

in 2000 [AIK+00]. It is an evolution of the previous ciphers MISTY-1 and MISTY-2 [Mat97],18

and E2 [KMA+98]. It also shares several design aspects with KASUMI. All these ciphers form19

indeed a single family, with Camellia and KASUMI being the most important members.20

E2 (described below) was one of the 15 AES candidates, but not a finalist. NTT adopted many21

of E2’s special characteristics in Camellia, which has essentially replaced E2. Therefore we22

focus here on the description of Camellia, instead of E2 (though we shall briefly describe the23

differences between the two ciphers).24

The cipher has been standardised by ISO/IEC, and approved for use by the European Union’s25

NESSIE project and the Japanese CRYPTREC project. It is widely standardised and certified26

for several uses, (see Subsection 3.18.6 on page 175).27

It was designed to be suitable for both software and hardware implementations, from low-cost28

smart cards to high-speed network systems. So far, it seems that the cipher has security levels29

and throughput comparable to the Advanced Encryption Standard.30

3.18.1 Design31

Camellia can use 128-bit, 192-bit or 256-bit keys. It is a Feistel cipher with either 18 rounds32

(when using 128-bit keys) or 24 rounds (when using 192- or 256-bit keys). After the sixth,33

twelfth and, if the number of rounds is 24, eighteenth round, a logical transformation layer34

is applied: the so-called “FL-function” and its inverse (the FL−1-Function) are applied to both35

source and target branches of the Feistel structure. The cipher also employs input and output36

key whitening, using keys derived from the secret key.37
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Figure 3.24: The Camellia F-function
Round keys with indexes 0 to 7 are fed to columns 0 to 7, respectively.

in0 in1 in2 in3 in4 in5 in6 in7

𝑆1 𝑆2 𝑆3 𝑆4 𝑆2 𝑆3 𝑆4 𝑆1

out0 out1 out2 out3 out4 out5 out6 out7

𝑘0, … , 𝑘7

The F-function of Camellia is depicted in Figure 3.24. The FL- and FL−1-Functions of Camellia1

are depicted in Figure 3.25 on the following page: they just use the XOR, AND, OR operators2

and single bit rotations and they were added as a simple and economical way to attempt to3

thwart future types of cryptanalysis. They are indeed effective: despite being, at least appar-4

ently, weaker than, say, decorrelation modules (cf. Subsection 1.10.3 on page 64), they make5

the cipher stronger, as it is shown by the fact that Camellia (and the MISTY ciphers) has been6

more successfully analysed with the FL-functions removed.7

Camellia uses four different 8-bit S-boxes, which are each used twice in the S-box layer of the F-8

function. The structure of the F-function is superficially strikingly similar to a round of SAFER9

(cf. Section 3.8 on page 150), but it is also simpler in that key masking is performed only once10

and bitwise XORs are used in place of modular additions.11

The key schedule uses the encryption function itself. After combining some keys using sub-12

fields of the secret key, these are encrypted by two rounds of the cipher with some predefined13

constants in place of keys: The 𝑖-th constant is just the binary expansions of the square root14

of the 𝑖-th prime number. From the outputs of these reduced encryptions, all sub keys are15

obtained using circular bit rotation and bit field extraction.16
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Figure 3.25: The Camellia FL and FL−1 Functions
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3.18.2 Cryptanalysis1

The cipher has withstood intense cryptanalytic efforts.2

The best attacks on reduced-round Camellia published so far are square and rectangle attacks3

(i.e. integral and boomerang attacks).4

A nine-round square attack presented by Yongjin Yeom, Sangwoo Park, and Iljun Kim [YPK02]5

requires 261 chosen plaintexts and an amount of work equivalent to 2202 encryptions. The6

rectangle attack proposed by Taizo Shirai [Shi02] breaks ten rounds with 2127 chosen plaintexts7

and requires 2241 memory accesses.8

Yasuo Hatano, Hiroki Sekine, and Toshinobu Kaneko [HSK02] analyse an 11-round variant of9

Camellia using higher order differentials. The attack would require 293 chosen ciphertexts, but10

is probably not significantly faster than an exhaustive search for the key, even for 256-bit keys.11

Note that more rounds can be broken if the FL-layers are discarded. For Camellia-128 only12

8-round reduced version without FL-layer have been broken [WZF06].13

A linear attack on a 12-round variant of Camellia-256 without FL-layers is presented in [Shi02].14

The attack requires 2119 known plaintexts and recovers the key after performing a computation15

equivalent to 2247 encryptions.16

For the 192- and 256-bit variants, only 11- and 12-round reduced versions respectively have17

been theoretically broken, with complexity 2167.1 and 2220.87 respectively [LGLL11, LGLL12].18

3.18.3 Advantages19

The cipher can attain very good performance, and it seems that it has a strong advantage when20

fully unrolled and optimized hardware implementations are needed, as these can be imple-21

mented in a more compact way than competing ciphers (cf. the single clock HW implementa-22

tions in Chapter 4 on page 235). Being a Feistel design, encryption and decryption use the same23

circuit and there is only a marginal overhead to support both.24
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3.18.4 Disadvantages1

The key schedule can be partially overlappedwith decryption, but it cannot run fully in parallel2

with it as with encryption.3

3.18.5 Intellectual Property4

Camellia is patented. Patents that cover aspects of the ciphers Camellia and E2 (cf. Subsec-5

tion 3.18.7) include U.S. Patent 7,697,684, U.S. Patent 7,760,870, U.S. Patent 7,760,871, and U.S.6

Patent 7,822,196. Some of the protected aspects are the particular form of Feistel Network (Fig-7

ure 3.24 on page 173), the use of the FL-function and its inverse (Figure 3.25 on the facing page),8

and the key schedule – but this is by no means a complete list.9

However, the cipher as a whole is available under a royalty-free license [NTT01]. This has10

allowed the Camellia cipher to become part of the OpenSSL Project, under an open-source11

license, sinceNovember 2006 [NTT06], and become part of theMozilla’s NSS (Network Security12

Services) module [Kan07].13

3.18.6 Certifications14

It is widely standardised for several applications, including smart grid applications:15

• RFC 3713 gives a description of the Camellia encryption algorithm, and RFC 5528 docu-16

ments its use in various modes of operation;17

• Camellia is widely used in Cryptographic Message Syntax (CMS): RFC 3657, RFC 5990;18

• It is used in TLS RFC 4132, RFC 5932, RFC 6367 and IPSec RFC 4312, RFC 5529;19

• It is certified for OpenPGP RFC 5581;20

• See also RFC 4051 Additional XML Security Uniform Resource Identifiers (URIs), RFC 603021

Portable Symmetric Key Container (PSKC), and RFC 6272 Internet Protocols for the Smart22

Grid; and23

• It is included in ISO/IEC standard 18033-3:2010.24

3.18.7 E225

E2 [KMA+98] is similar to Camellia, but has a more complex F-function. E2’s F-function is26

similar to Camellia’s, but after the diffusion layer there are additional key mixing and S-box27

layers, and the byte permutation at the end is a rotation by one byte, instead of four bytes.28

E2 does not use the FL and FL−1 functions, but it has more complex and more expensive keyed29

transformations (IT and FT, for Initial and Final Transformation) at the beginning and at the end30

of the cipher based on the XORing and modular multiplication modulo 232 of the state with31

subkeys – thus requiring the use of modular inversions in order to invert the transformations.32

These transformations are thus related to decorrelation modules (Subsection 1.10.3 on page 64)33

but also to IDEA (Section 3.6 on page 144).34

Key schedule is not very expensive, but the fact that it takes time between two and three en-35

cryptions reduced key agility.36

175

http://www.google.com/patents/US7697684
http://www.google.com/patents/US7760870
http://www.google.com/patents/US7760871
http://www.google.com/patents/US7822196
http://www.google.com/patents/US7822196
http://www.google.com/patents/US7822196
http://tools.ietf.org/search/rfc3713
http://tools.ietf.org/search/rfc5528
http://tools.ietf.org/search/rfc3657
http://tools.ietf.org/search/rfc5990
http://tools.ietf.org/search/rfc4132
http://tools.ietf.org/search/rfc5932
http://tools.ietf.org/search/rfc6367
http://tools.ietf.org/search/rfc4312
http://tools.ietf.org/search/rfc5529
http://tools.ietf.org/search/rfc5581
http://tools.ietf.org/search/rfc4051
http://tools.ietf.org/search/rfc6030
http://tools.ietf.org/search/rfc6272
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=54531


CHAPTER 3. BLOCK CIPHERS

As a result, Camellia is a much lighter cipher than E2 and its security is also better understood.1

The multiple FL/FL−1 layers in the cipher make also better use of the idea of mixing heteroge-2

neous rounds first encountered in Skipjack (Section 3.14 on page 166).3

3.18.7.1 Cryptanalysis4

The best cryptanalysis of E2 so far is still Mitsuru Matsui and Toshio Tokita’s analysis from5

1999 [MT99]. They break up to 9 rounds of the cipher with IT and FT or 10 rounds without IT6

and FT using truncated differential cryptanalysis, requiring 2109 plaintext pairs.7

3.18.8 MISTY-1, MISTY-2 and KASUMI8

MISTY-1, MISTY-2 and KASUMI are 64-bit block ciphers with a 128-bit secret key. MISTY-19

and MISTY-2 were described first by Matsui in [Mat97] and are patented by Mitsubishi Elec-10

tric Corporation, whereas KASUMI was introduced in 1999 by 3GPP to be used in the UMTS11

security system by the Security Algorithms Group of Experts (SAGE).12

MISTY stands for Mitsubishi Improved Security TechnologY, and it is also the acronym formed13

by the initials of the family names of its designers: Mitsuru Matsui, Tetsuya Ichikawa, Toru14

Sorimachi, Toshio Tokita, and Atsuhiro Yamagishi. Finally, “kasumi” (霞み) is the Japanese15

word for “mist.”.16

The complete description of these three ciphers is complex, however, we want to mention a few17

important high-level aspects of this cipher family.18

MISTY-1 and KASUMI are Type-1 Feistel networks and MISTY-2 is a “Matsui network” as rep-19

resented in Figure 1.4 on page 31, Subfigure 2. Eight rounds are suggested for MISTY and are20

mandated for KASUMI.21

The F-function of the round functions is called the “FO-function.” it is a three-round, two-22

branch, balanced 32-bit Matsui network. The round function of the FO-function is also im-23

plemented as a three-round (in MISTY-1 and MISTY-2) or four-round (KASUMI) unbalanced,24

9 + 7-bit Matsui network, without repartitioning of the inputs between rounds. The data from25

the source branch to the target branch is either truncated or zero-extended to the width of the26

target branch. The FO-function uses two S-boxes, one of which is a 9-bit S-box and the other27

one is 7-bit.28

An additional function is used, the keyed “FL-function.” It is similar to Camellia’s FL-function,29

but with some differences: In MISTY-1 and MISTY-2, it omits the cyclic rotation but it is oth-30

erwise unchanged; in KASUMI the FL-function has instead two cyclic rotation, one between31

the AND and the XOR, and one between the OR and the XOR. In MISTY-1, FL-layers separate32

every two rounds of the cipher (as in Camellia). and the FL-functions are placed on both the33

source and target branches. In MISTY-2, FL-functions are placed on both the source and target34

branches every four rounds, and every other round on the source-to-target mixing connection.35

In KASUMI, they are inserted before and after the FO-functions for odd and even rounds re-36

spectively, i.e. the F-function is a functional composition of FO- and FL-functions.37

The choice of the Matsui network allows several operations to be performed in parallel.38

These ciphers herald a hierarchical (also recursive, or nested) design, that is later used also by39

other types of ciphers, for instance by the block cipher Hierocrypt [OMSK00].40
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There are several round keys, but the key schedule is very straightforward.1

3.18.8.1 Cryptanalysis2

MISTY has been widely studied since its publication, but no serious flaws have been found.3

Until recently, the best attack on reduced-round MISTY was the 5-round integral attack by4

Knudsen and Wagner [KW02] The attack requires 234 chosen plaintexts and has a time com-5

plexity of 248. In a recent paper, Yasutaka Igarashi et al. [IKE+13] break 8 Rounds of MISTY-26

without FL functions in time 257.4 using 235 blocks of chosen plaintext.7

In 1999 Hidema Tanaka, Kazuyuki Hisamatsu, and Toshinobu Kaneka [THK99] break five8

rounds of MISTY-1 without FL functions using 11 different seventh order differentials. A first9

explanation of this attackwas given by Steve Babbage and Laurent Frisch at ICISC 2000 [BF00a],10

and the fact that seventh order differential cryptanalysis works (at least partially) is related to11

the fact that several non-linear components have degree bounded, in this case, by seven. Anne12

Canteaut and Marion Videau [CV02] further prove that this is caused precisely by the use of13

highly non-linear almost bent functions, i.e. the specific type of SBOX that has been chosen.14

The best non-related-key attack cryptanalysis of KASUMI is still Ulrich Kühn’s EUROCRYPT15

2001 paper [Küh01] where an impossible differential attack on a six rounds reduced version of16

KASUMI is described.17

In 2010, Orr Dunkelman, NathanKeller, andAdi Shamir, broke KASUMI by a related key attack18

with very modest computational resources [DKS10b]. This attack takes less than two hours on19

a single PC, but isn’t applicable to 3G due to the plaintext and related key requirements. Hence,20

KASUMI as used in 3G is not broken. The attack is ineffective against MISTY.21

A 32nd order differential attack breaks eight rounds of MISTY-2 without FL functions [IKE+13]22

with 235 blocks of chosen plaintext and in time 257.4.23

3.18.8.2 Intellectual Property24

As alreadymentioned,MISTY-1 is patented – see for instanceU.S. Patent 6,201,869 (PCTnumber25

PCT/JP1996/002154) – but, as stated in RFC 2994, “the algorithm is freely available for academic26

(non-profit) use. Additionally, the algorithm can be used for commercial use without paying the patent fee27

if you contract with Mitsubishi Electric Corporation.” The patent cover several ideas, such as the use28

of the Feistel/Matsui networks, including unbalanced 9 + 7 bits variants thereof (Embodiment29

6). According to [3GP09], Mitsubishi holds essential patents on KASUMI, and a separate IPR30

License Agreement from Mitsubishi is necessary to use the cipher.31

3.19 The AES Contest32

This section serves as (i) an historical interlude, (ii) a prelude to the description of Rijndael, and (iii) a33

placeholder to give brief descriptions and references to other block ciphers which were submitted to the34

AES contest and are worth mentioning.35

The US National Institute of Standards and Technology (NIST) launched in January 1997 a con-36

test to find a block cipher to replace the aging DES. DES had become obsolete because its 56-bit37

key size was inadequate to resist brute force attacks, givenmodern technology, the block length38

was too short for several types of applications, for instance to construct hash functions, andwas39
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also found to be vulnerable to several types of attacks.1

OnOctober 3rd, 2000 Rijndael (described in Section 3.20) was chosen as thewinning cipher. The2

ratification of Rijndael as the new Advanced Encryption Standard, AES, took place on Novem-3

ber 26th, 2001.4

The entire process was completely open; even the requirements document was first published5

as a draft and comment or criticism invited before a final version was written, and all of the6

later work toward the choice of a standard was public as well. Because of this, the process was7

widely praised for its laudable goal of taking Kerckhoffs’ Principle into account – the security of8

an encryption method should be based on key secrecy, not on the secrecy of (design aspects of)9

the cipher. The final requirements specified a block cipher with 128-bit block size and support10

for 128, 192 or 256-bit key sizes. Evaluation criteria included security, performance on a range of11

platforms from 8-bit CPUs (e.g. in smart cards) to high end CPUs, and ease of implementation12

in both software and hardware.13

Fifteen submissions meeting basic criteria were received, from the whole world. All of the14

entries were iterated block ciphers. Most designs were substitution-permutation networks or15

Feistel structures, or variations of those. Several had proofs of resistance to various attacks.16

In alphabetical order, the 15 first round candidates were: CAST-256 (Section 3.7 on page 148),17

CRYPTON [Lim99] (the very similar cipher mCrypton is described in Section 3.25 on page 198),18

DEAL (Subsection 3.19.1 on the next page), DFC (Subsection 3.19.2 on the facing page), E2 (dis-19

cussed in Section 3.18 on Camellia), FROG (Subsection 3.19.3 on page 180), Hasty Pudding20

(Subsection 3.19.4 on page 180), LOKI97 (Subsection 3.19.5 on page 181), MAGENTA (Subsec-21

tion 3.19.6 on page 181), MARS (Section 3.16 on page 169), RC6 (see Section 3.10 on page 158 on22

RC5), Rijndael (Section 3.20 on page 182), SAFER+ (discussed in the section about SAFER, Sec-23

tion 3.8 on page 150), Serpent (Section 3.17 on page 170), and Twofish (Section 3.13 on page 164).24

After intense scrutiny bymany of theworld’s best-known cryptographers, and two conferences,25

the field was narrowed to five finalists: Twofish, MARS, Serpent, RC6, and Rjindael. One could26

summarize the relative strengths and weaknesses of these five finalists as follows:27

• MARS - very complex, complicated key schedule, reasonably fast but difficult to achieve28

good performance and secure implementation in key schedule, good security margin;29

• RC6 - very simple and quite fast, but low security margin;30

• Rijndael - clean and well understood design, fast, high security margin;31

• Serpent - slow, especially in SW and more so in constrained environments, clean design,32

very high security margin;33

• Twofish - complex, quite fast but not as fast as Rijndael, high security margin.34

After another year of analysis and testing focused on the finalists, and another conference with35

all of the finalist teams giving presentations, awinnerwas chosen by vote. And so, onOctober 2,36

2000, NIST announced that it had chosen Rijndael as the AES. On November 26, 2001, AES was37

formally approved as a US federal standard.38

RC6 is the only one of the five finalists which does not have a completely open license; it is still39

proprietary to RSA Security. The other finalists can be used freely.40
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In 2003 the NSA announced that it allows the use of AES to encrypt classified documents up to1

the level SECRET for all key lengths, and up to the TOP SECRET level for key lengths of either2

192 or 256 bits. Prior to that date, only non-public algorithms had been used for the encryption3

of classified documents.4

Wealreadydescribedmanyof the 15 submissions or ciphers strongly related to them. Webriefly5

comment here on the remaining algorithms, in alphabetical order, except for CRYPTON, for the6

reasons that it is very similar to SQUARE andRijndael andwe shall discuss the also very similar7

mCrypton in Section 3.25 on page 198.8

3.19.1 DEAL (and Ladder-DES)9

DEAL, the Data Encryption Algorithm with Larger blocks, is a Feistel network which uses10

DES as the F-function, similarly to its precursor Ladder-DES by Terry Ritter. The design was11

proposed in a report by Lars Knudsen in 1998 [Knu98], andwas submitted to theAES contest by12

Richard Outerbridge (who notes that Knudsen had presented the design at the SAC conference13

in 1997).14

It did not make it into the finals, and was entered mainly to provide a baseline for comparison15

to other ciphers. DEAL has approximately the overheads of Triple DES, making it too slow to16

be a competitive candidate for AES.17

It has a 128-bit block size and a variable key size of either 128, 192, or 256 bits. It uses 6 rounds for18

key sizes of 128 and 192 bits, 8 rounds for 256-bit keys. Key schedule consists in concatenating a19

sufficient number differently masked copies of the given private key, and DES-CBC encrypting20

this buffer with fixed IV and key.21

The interest of this cipher is that it is a proper exemplification of the Luby-Rackoff construction22

(cf. Section 1.3 on page 28). Using that construction, it is easy to double the block size of an23

established cipher by using it as the F-function, at the price of a considerably slower operation24

and potentially amplifying the effects of biases in the original cipher. Furthermore, since cryp-25

tographic ciphers used in practice are notperfect pseudorandom functions, three or four rounds26

are often not sufficient. Indeed, Ladder-DES, which is a four round Luby-Rackoff construction,27

was quickly broken by Eli Biham [Bih97a]. Ladder-DES uses four 56-bit keys, and therefore it is28

expected that a meet-in-the-middle attack will have a complexity of 2112. However, Eli Biham29

showed hot to recover the complete key in time 288.30

Stefan Lucks analyzed the security of DEAL in [Luc99] and proved that the DEAL with with31

128, 192, and 256 bits keys, can be broken in time 2121, 2121, and 2224 respectively.32

3.19.2 DFC33

Another theoretically interesting submission is DFC, the De-correlated Fast Cipher, described34

in [GGH+98] and revised in [GNNV00].35

It is an eight-round Feistel cipher.36

The secret key 𝐾 is first turned into a 1024-bit “Expanded Key” EK through an Expanding Func-37

tion EF: these 1024 bits are then split into the eight 128-bit round keys used by the encryption.38

The EF function performs a four round Feistel scheme using the same round function RF as39

the encryption, where the inputs and the round keys are derived from 𝐾 and some predefined40
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constants.1

The function RF is related to a Type IV decorrelation module (cf. Subsection 1.10.3 on page 64)2

that maps a 64-bit string onto a 64-bit string by using one 128-bit string parameter. It mixes3

modular multiplication modulo 264 + 13, reduction modulo 264 and it uses a single 6 × 32 bits4

S-box to determine a 32-bit value to mix in according to six bits of the input.5

All the constant used in the cipher are taken from the expansion of Napier’s constant 𝑒.6

This cipher was based on Serge Vaudenay’s theoretical work on decorrelation theory. That7

theory gives methods of constructing ciphers which are provably immune to differential crypt-8

analysis, linear cryptanalysis, and any other attacks that meet some fairly broad assumptions.9

However, some attacks on DFC were found by going outside those assumptions, such as a10

variant of differential analysis [KR99a].11

3.19.3 FROG12

FROG is a variable size block cipher. It supports block sizes from 8 to 128 bytes and key sizes13

from 5 to 125 bytes.14

Its design is very unorthodox: it uses data derived from the primary key as a program for an15

interpreter, so that each round can use a different sequence of operations. Eight rounds are16

used. Encryption and decryption are fast, but the key schedule is rather slow because it has to17

build a program for the interpreter.18

Despite the fact that the sequence of computations is variable, David Wagner, Niels Ferguson,19

and Bruce Schneier in [WFS99] broke it using differential cryptanalysis - and also found that20

it is faster to attack decryption than encryption. Also, the design makes it very difficult to21

implement both the key schedule and the ciphering operations resistant against power analysis.22

3.19.4 Hasty Pudding23

Rich Schroeppel’s Hasty Pudding Cipher or HPC is a variable size block cipher; blocks can be24

any size the application requires. It therefore might be ideal for things like encrypting disk25

blocks. Key size is also variable; any integer number of bits. It is designed for architectures26

with 64-bit operations.27

The design of the cipher is obscure and it is not well understood. It has a very expensive key28

setup. These two factors led to the cipher not being admitted to the final round.29

Hasty Pudding’s interest lies in the fact that it is the first tweakable block cipher, and it was30

designed before that term was actually introduced.31

A tweakable block cipher [LRW02, LRW11] is a block cipher that accepts a third input called32

the tweak. The tweak, along with the key, selects the permutation computed by the cipher.33

Changing the key can be expensive, but changing the tweak should remain a lightweight oper-34

ation. A tweak makes creating modes of operation for block ciphers easier to construct and to35

analyse. In the case of a tweakable block cipher, to be secure means that an adversary should36

not be able to break the cipher even with control of the tweak input.37

The tweak in Hasty Pudding is called “spice.”38
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3.19.5 LOKI971

LOKI97 was the first published candidate in the AES contest [BP98]. The design and analysis2

of LOKI97 was performed by Lawrie Brown with assistance and critique from Josef Pieprzyk –3

that also designed the S-box functions – and Jennifer Seberry.4

It is a 16-round Feistel cipher with an F-function that is basically two rounds of an SPN –5

whereas in DES the F-function is a single SP round. We recall that the F-function has two6

inputs, a half of the cipher state (𝐿) and a round key 𝑘. So, we use the notation 𝐹 = 𝐹(𝐿, 𝑘). The7

F-function uses two large 11- and 13- bit S-boxes.8

The key schedule is a source heavy 4-branch Feistel network. The input is quartet of words9

[𝑘4, 𝑘3, 𝑘2, 𝑘0], where each 𝑘𝑖 is a 64-bit value. Initially this is the encryption key, padded to 25610

bits for shorter keys. The quartet is then updated using same F-function as the encryption, as11

follows: first the next round key 𝜎 𝐹(�𝑘1⊕𝑘3⊕(𝑖⋅𝛥), 𝑘2)�⊕𝑘4 is computed, then the substitution12

[𝑘4, 𝑘3, 𝑘2, 𝑘1] [𝑘3, 𝑘2, 𝑘1, 𝜎] is performed. The constant 𝛥 is ⌊(√5 − 1) ⋅ 263⌋.13

For each round of the cipher, a total three round keys have to be generated: one as the key to14

the keyed F-function and two to be directly mixed to the branches via modular additions. The15

Feistel round itself uses a XOR to mix the output of the F-function.16

This description makes it clear that the cipher is computationally heavy and in fact, according17

to Schneier, it ranked 12th in performance among the 15 AES candidates. Also, the key schedule18

can run in parallel with encryption, but not with decryption.19

The cipher was broken by Lars Knudsen and Vincent Rijmen [KR99b] using both linear crypt-20

analysis and differential cryptanalysis. Both attack require only about 256 known plaintexts.21

Further cryptanalysis includes [WLFQ99] (where also AES candidates DFC and MAGENTA22

are analysed) and [WLFQ00].23

3.19.6 MAGENTA24

The Multifunctional Algorithm for General-purpose Encryption and Network Telecommunication Ap-25

plications was Deutsche Telekom’s entry in the AES competition [JH98].26

MAGENTA has a block size of 128 bits.It is a Feistel cipher with six rounds for the key size of27

128 and 192 bits, and eight rounds for the key size of 256 bits.28

It is often cited as an example of Kerckhoffs’ Principle, a demonstration of why unpublished29

and therefore unanalysed ciphers cannot be trusted. Unlike all other candidates, this cipherwas30

made available to the conference attendees only on the day of presentation. Its presentationwas31

given on the morning of August 20th, 1998, to an audience that included many of the world’s32

top cryptographers. Some saw flaws, and there was intense discussion over lunch. By that33

evening, a draft paper on breaking the cipher was circulating and the final version [BBF+99]34

was presented at the second AES conference.35

The S-box is constructed in an interesting way, inspired by the exponential S-boxes found in36

ciphers like SAFER (Section 3.8 on page 150): The S-box is essentially the map ℕ → 𝔽28 =37

𝔽2[𝑥]/(𝜙(𝑥)) where 𝑛 𝑥𝑛 mod 𝜙(𝑥) and 𝜙(𝑥) = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥2 + 1, except for the last entry38

𝜙(255) = 0. This S-box present decent differential properties (but far from those of AES), but39

bad linear properties.40
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Another design principle ofMAGENTAworthmentioning is the construction of the F-function.1

The F-function first concatenates a 8-byte branch of the Feistel network with an 8-byte round2

key - resulting in a 16 byte vector𝑤0. The resulting 16-byte vector is then shuffled (the first eight3

bytes are interleaved with the last eight), and the 8 pairs of adjacent bytes are transformed as4

(𝑥, 𝑦) (�𝜙(𝑥 ⊕𝜙(𝑦)), 𝜙(𝑦 ⊕𝜙(𝑥)))�. The combination of shuffling and substitution is called the𝛱5

operation in MAGENTA. In order to guarantee diffusion, 𝛱 is performed four times in a row,6

this giving rise to a modified FHT (fast Hadamard transform).7

Then 𝑤0 is XORed to the state, 𝛱 is applies again four times, 𝑤0 XORed to the state a second8

time, 𝛱 is applies another four times. The value of the F-function is formed by concatenating9

the bytes in the even numbered positions of the final state.10

The key schedule is perhaps the biggest weakness of the design. If a 64 𝑡-bit key 𝐾 is used, it11

is first split into 64-bit chunks 𝑘𝑖 for 1 ⩽ 𝑖 ⩽ 𝑡, which are then used as the round keys. For12

128, resp. 192 and 256-bit key the sequences are [𝑘1, 𝑘1, 𝑘2, 𝑘2, 𝑘1, 𝑘1]; [𝑘1, 𝑘2, 𝑘3, 𝑘3, 𝑘2, 𝑘1]; and13

[𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘4, 𝑘3, 𝑘2, 𝑘1]. This immediately leads to splice-and-cut attacks (Subsection 2.4.4 on14

page 102): MAGENTA-128 can be broken using 264 chosen plaintexts in time 264, MAGENTA-15

192 can be broken using 264 chosen plaintexts in time 2128, and MAGENTA-256 can be broken16

using 2128 chosen plaintexts in time 2128. All these attacks can be turned into known plaintext17

attacks with different tradeoffs, for instance reducing thememory usage by 𝑛 bits while increas-18

ing the attack complexity by about 𝑛 bits. These attack were presented (without recognising19

them asMerkle-Hellman attacks and the corresponding van Oorschot-Wiener known plaintext20

variants) already in [BBF+99].21

Another remark, made also by the designer of the cipher themselves, is that, due to the sym-22

metry of the key scheduling, encryption and decryption are identical except for the order of23

the two halves of the plaintexts and ciphertexts. Given a ciphertext, it be can decrypted just by24

swapping its two halves, reencrypting the result, and swapping again. The main consequence25

is that MAGENTA cannot be used in scenarios where an attacker has access to an encryption26

oracle, considerably reducing its fields of application. Also, for any fixed key, the cipher (with-27

out final swap) will have an expected number of 264 fixed points which means that blocks of28

plaintextsmay be revealedwith a significantly higher likelihood than the claimed security level.29

3.20 AES (Rijndael)30

Rijndael [DR02a, DR02b], the winner of the AES contest, was designed by Joan Daemen and31

Vincent Rijmen. AsAES, Rijndael’s block size is 128 bits (additional block sizes are supported by32

the original submission). It is a SP networkwith 10, 12, or 14 rounds for key sizes of 128, 192, and33

256 bits respectively. The cipher is designed according to the wide trails strategy (Section 1.434

on page 34), and in particular it is directly derived from SQUARE (Section 3.11 on page 160).35

The 128-bit state is represented as a 4 × 4 matrix of bytes36

⎛
⎜
⎜
⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎞
⎟
⎟
⎟
⎠

.

The entries can be interpreted as machine bytes as well as elements of the Galois field 𝔽28 . The37
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latter is represented using a polynomial basis defined by the polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1.1

A byte is interpreted as an element of 𝔽28 in the following way: the 𝑖-th bit of the byte is the2

coefficient of 𝑥𝑖.3

The rounds are constructed from following operations:4

(a) AddRoundKey: Mixing (XOR) of key derived material. The state is considered as a 128-bit5

value which is then bitwise XORed to a round key.6

(b) SubBytes: Run all entries through an 8-bit S-box. The Rijndael S-box is derived from the7

inversion operation, i.e. the input is considered as an element of 𝔽28 and any non-zero ele-8

ment is mapped to its inverse; the zero is mapped to zero. (This choice has been influenced9

by Kaysa Nyberg’s theoretical groundwork [Nyb93].) In order to avoid fix points, the inver-10

sion is composed with an affine operation.11

(c) ShiftRows: Cyclicly shift each row by 0, 1, 2 and 3 positions respectively. Inmathematical12

notation13

⎛
⎜
⎜
⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,0
𝑎2,2 𝑎2,3 𝑎2,0 𝑎2,1
𝑎3,3 𝑎3,0 𝑎3,1 𝑎3,2

⎞
⎟
⎟
⎟
⎠

.

(d) MixColumns: Multiply the state matrix by a fixed MDS matrix, as follows14

⎛
⎜
⎜
⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝑥 𝑥 + 1 1 1
1 𝑥 𝑥 + 1 1
1 1 𝑥 𝑥 + 1

𝑥 + 1 1 1 𝑥

⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎞
⎟
⎟
⎟
⎠

.

Multiplication by 𝑥 corresponds to a left shift, and multiplication by 𝑥 + 1means XOR of the15

input with its left shift. After shifting, a conditional XOR with 1B𝑥 should be performed if16

the shifted value is larger than FF𝑥.17

This is equivalent to considering each column as a polynomial over the Galois field 𝔽28 , and18

then multiply it modulo 𝑋4 + 1 with fixed polynomial 𝐶(𝑋) = (𝑥 + 1) ⋅ 𝑋3 + 𝑋2 + 𝑋 + 𝑥.19

Without MixColumns the cipher would be equivalent to the interleaving of three strongly20

related 32-bit block ciphers and four 8-bit ones – as the ShiftRows operation only per-21

mutes entries within three of the four rows.22

Let 𝑟 be the number of rounds (10,12 or 14). The four fundamental operation are used in the23

following way to construct the whole cipher.24

(a) Key Expansion (or Key Schedule) – round keys are derived from the cipher key. During25

encryption this can run in parallel with the data encryption path.26

(b) The Initial Round consists of just AddRoundKey, that is it corresponds to pre-whitening.27

(c) The following 𝑡 − 1 Rounds consist each of SubBytes, ShiftRows, MixColumns, and28

AddRoundKey, in this order.29
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Figure 3.26: The AES Key Schedule for 128-bit Keys

𝑊[4𝑖] 𝑊[4𝑖 + 1] 𝑊[4𝑖 + 2] 𝑊[4𝑖 + 3]

𝑊[4𝑖 + 4] 𝑊[4𝑖 + 5] 𝑊[4𝑖 + 6] 𝑊[4𝑖 + 7]

g

(d) The Final Round consists only of the SubBytes, ShiftRows and AddRoundKey opera-1

tions. Note that MixColumns is omitted: This does not affect security, since it is a linear2

operation and therefore having it or not just corresponds to a linear change of the last round3

key - that has a post-whitening effect.4

The key schedule generates 11, 13, or 15 128-bit round keys for the 10, 12, and 14 round versions5

of the cipher. The first sub key is equal to the private key. To generate all subsequent keys, a6

structure is used that is loosely related to 4-branch Feistel network using a round function 𝑔.7

The key schedule is represented in Figure 3.26 in the case of 128-bit keys. It can be seen as a8

kind of Feistel network: The initial words 𝑊[0] to 𝑊[3] are the unmodified encryption key –9

which is also the first round key. Each iteration of the key schedule generates a further 128-bit10

round key. The versions for 192- and 256-bit keys present minor differences.11

The function 𝑔 is a 32-bit to 32-bit function consisting of: (i) a right rotation of the input by 812

bits, (i) running all four bytes of this rotated input through the AES S-box, and (iii) the addition13

of a fixed round coefficient to the output of the first S-box.14

3.20.1 Remarks15

The lineage of the cipher (and that of SQUARE before it) can clearly be traced to precursors such16

as SAFER (Section 3.8), where the round function consists of key mixing, an array of S-boxes,17

and a layer of regular, homogeneous arithmetic operations in an algebraically incompatible18

arithmetic structure – in SAFER’s case the integers modulo 256 and in Rijndael’s case the Galois19

field 𝔽28 .20

3.20.2 Cryptanalysis21

Despite the best efforts of the whole cryptographic community, the AES has withstood crypt-22

analysis well. In fact, there is no attack on the full round versions of the cipher that is more23

than 4 times faster than brute force in the single key setting.24

Tables 3.2, 3.3 and 3.4 report the best attacks on AES-128, AES-192 and AES-256 in the single25

key model that we were able to find in the published literature. In these tables as well as in26
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all the other attack complexity tables in this chapter, the “data” column usually contains the1

amount of CP data, unless otherwise noted – the first letter being “K” meaning “known,” and2

the second letter being “C” meaning “Ciphertext.”3

So-called Biclique analysis [BKR11a, BKR11b] brought the first key recovery attacks on the4

full AES-128, AES-192, and AES-256 with computational complexities better than brute force,5

namely 2126.2, 2189.4 and 2254.4, respectively. We do not consider these attacks to actually affect6

the security of the AES.7

Until a few years ago, no attack could break more than 7 rounds of any variant of the AES,8

and it was first in [LDKK08], resp. [DS08a], that 7 rounds of AES-128 and 8 rounds of AES-192,9

resp. 8 rounds AES-256 have been attacked with time complexity significantly lower than brute10

force.11

The attacks with the lowest complexities [BKN09, BK09] are all in the related-key model, that12

could be relevant, for instance, if an attacker can flip some bits in the keys by fault injection.13

However note that the complexity of such attacks greatly increases with the number of bits14

involved and all the related key relations are not trivial. These attacks are reported in Table 3.5.15

So far they only apply to the 192- and 256-bit key variants of AES.16

Low-data attacks are a potentially more serious type of attack, because in many adversarial17

scenarios an attacker cannot collect many chosen text pairs. Table 3.6 reports these attacks, that18

so far do not seem to be able to break more than four rounds.19

The algebraic structure of the AES is fairly simple, making it possible to describe the whole20

cipher by a relatively structured system of equations, which in particular is quite sparse over21

𝔽28 . In 2002 Nicolas Courtois and Josef Pieprzyk in [CP02a] presented an algorithm to solve22

such systems of equations, named the “XSL attack,” and conjectured that it should be able to23

break the AES, independently from the key size, in time 2203. Murphy and Robshaw argue that24

this complexity may be as low as 2100. Since then, Carlos Cid and Gaëtan Leurent [CL05], and25

Chu-Wee Lim and Khoongming Khoo [LK07] have shown that the attack cannot possibly work26

as originally presented.27

3.20.3 Advantages28

The AES’s performance performance is in general pretty good. The cipher was designed with29

both SW and HW performance optimisations in mind. It allows for considerable parallelism in30

implementation. There are several ways to merge different steps into simple table lookups – on31

the other hand care must be taken to avoid cache attacks.32

As shown in [RDJ+01], the field 𝔽28 can be implemented using subfields, and this leads to com-33

pact representation of the arithmetic and of the S-box in HW. bit-slicing can also be used, since34

only one S-box is used, allowing fast SW implementations.35

Intel introduced special ISA extensions to speed upAES computation (ARMhas defined similar36

extensions as well).37

3.20.4 Disadvantages38

Encryption and decryption are different enough that the overhead of an implementation of39

both over an implementation of encryption only is considerable. Despite this, encryption and40
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Table 3.2: Single Key Cryptanalysis of AES-128 – Selected Published Results

Rounds Attack Complexity
Attacked Time Data Memory Technique Reference

6/10 272 6 ⋅ 232 28 Square [FKL+00]
6/10 2106.17 28 2106.17 MitM [DF13, DF15]
7/10 2120 2127.997 264 Square [FKL+00]
7/10 2117.2 2112.2 2112.2 Imp. diff. [LDKK08]
7/10 2117.2 290.4 2106 Imp. diff. [MDRM10]
7/10 2110.2 2106.2 290.2 Imp. diff. [MDRM10]
7/10 2119.32 2115.32 245 Imp. diff. [Yua10]
7/10 2126.47 232 2126.47 MitM [DF13, DF15]
7/10 299 2105 290 MitM [DFJ13]
7/10 299 299 296 MitM [DFJ13]
8/10 2125.3 288 28 Bicliques [BKR11a]

10 (full) 2126.2 288 28 Bicliques [BKR11a]

Imp. diff: Impossible differentials

Table 3.3: Single Key Cryptanalysis of AES-192 – Selected Published Results

Rounds Attack Complexity
Attacked Time Data Memory Technique Reference

6/12 2109.67 28 2109.67 MitM [DF13, DF15]
7/12 2155 19 ⋅ 232 19 ⋅ 232 Square [FKL+00]
7/12 2117.2 MA 2112.2 293.2 Imp. diff. [LDKK08]
7/12 2143 295 2143 MitM [DS08a]
7/12 2116 2116 2116 MitM [DKS10a, DKS15]
7/12 2172 2113 2129 MitM [DKS10a, DKS15]
7/12 2154.67 2109.67 245 Imp. diff. [Yua10]
7/12 2163 28 2153.34 MitM [DF13, DF15]
7/12 2129.67 232 2129.67 MitM [DF13, DF15]
7/12 299 297 298 MitM [DFJ13]
8/12 2188 2128 − 2119 264 Square [FKL+00]
8/12 2118.8 MA 2113.8 2113.8 Imp. diff. [LDKK08]
8/12 2139.2 291.2 2101 Imp. diff. [LDKK08]
8/12 2166.3 2102.3 245 Imp. diff. [Yua10]
8/12 2187.63 241 2186 MitM [WLH11]
8/12 2172 2107 296 MitM [DFJ13]
8/12 2172 2113 282 MitM [DFJ13]
8/12 2182.17 232 2182.17 MitM [DF13, DF15]
8/12 2140 2104.83 2138.17 MitM [DF13, DF15]
8/12 2140 2113 2130 MitM [DF13, DF15]
9/12 2180.89 2115.89 245 Imp. diff. [Yua10]
9/12 2150.89 2125.89 245 Imp. diff. [Yua10]
9/12 2188.8 280 28 Bicliques [BKR11a]

12 (full) 2189.4 280 28 Bicliques [BKR11a]

MA: Memory Accesses (as opposed to Encryptions)
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Table 3.4: Single Key Cryptanalysis of AES-256 – Selected Published Results

Rounds Attack Complexity
Attacked Time Data Memory Technique Reference

6/14 2122 28 2114.34 MitM [DF13, DF15]
7/14 2172 21 ⋅ 232 21 ⋅ 232 Square [FKL+00]
7/14 2143 295 2143 MitM [DS08a]
7/14 2116 2116 2116 MitM [DKS10a, DKS15]
7/14 2170.34 28 2186 MitM [DF13, DF15]
7/14 2178 216 2153.34 MitM [DF13, DF15]
7/14 2133.67 232 2133.67 MitM [DF13, DF15]
7/14 299 297 298 MitM [DFJ13]
8/14 2205.8 234.2 2205.8 MitM [DS08a]
8/14 2227.8 MA 2111.1 2116.1 Imp. diff. [LDKK08]
8/14 2229.7 MA 289.1 2101 Imp. diff. [LDKK08]
8/14 2196 2113 2129 MitM [DKS10a, DKS15]
8/14 2234.17 28 2234.17 MitM [DF13, DF15]
8/14 2195 232 2193.34 MitM [DF13, DF15]
8/14 2156 2102.83 2140.17 MitM [DF13, DF15]
8/14 2156 2113 2130 MitM [DF13, DF15]
8/14 2196 2107 296 MitM [DFJ13]
9/14 2254.17 232 2254.17 MitM [DF13, DF15]
9/14 2203 2120 2203 MitM [DFJ13]
9/14 2251.9 2120 28 Bicliques [BKR11a]
11/14 < 2254.4 2122.4 245 Imp. diff. [Yua10]
14 (full) 2254.4 240 28 Bicliques [BKR11a]

Table 3.5: Related Key Cryptanalysis of AES – Selected Published Results

Version and Attack Complexity
Rounds Attacked Time Data Memory Keys Technique Reference

9/12 2182 285 n/r 64 Partial Sums [BDK05, KHP07]
10/12 2182 2125 n/r 256 Rectangle [KHP07]
10/12 2183 2124 n/r 64 Rectangle [KHP07]A

ES
-1
92

12 (full) 2176 2123 2152 4 Amplified Bmrg. [BK09]

8/14 226.5 226.5 CC 226.5 2 Differential [BDK+10]
8/14 231 231 2 2 Differential [BDK+10]
9/14 5 ⋅ 2224 285 232 256 Partial Sums [FKL+00]
9/14 232 232 CC 232 2 Differential [BDK+10]
9/14 239 239 232 2 Differential [BDK+10]
10/14 2171.8 2114.9 n/r 256 Rectangle [BDK05, KHP07]
10/14 245 244 CC 233 2 Differential [BDK+10]A

ES
-2
56

10/14 249 248 233 2 Differential [BDK+10]
11/14 270 270 233 2 Differential [BDK+10]
13/14 276 276 276 4 Boomerang [BK10]
14 (full) 2131 2131 265 235 Differential [BKN09]
14 (full) 299.5 299.5 277 4 Boomerang [BK09]

Bmrg: Boomerang
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Table 3.6: Low Data Cryptanalysis of AES (all variants) – Selected Published Results

Rounds Attack Complexity
Attacked Time Data Memory Technique Reference

2.5 280 2 KP 280 G&D–MitM [BDF11]
3 232 2 21 Diff.–MitM [BDD+12]

2.5–3 231.6 2 28 Trunc. Diff. [GRR16a, GRR16b]
2.5 224 2 216 G&D–MitM [BDF11]
3 216 2 28 G&D–MitM [BDF11]

2.5–3 211.2 3 1 Trunc. Diff. [GRR16a, GRR16b]
3 28 3 28 G&D–MitM [BDF11]

2.5–3 225.7 3 212 Trunc. Diff. [GRR16a, GRR16b]
4 2104 2 1 Diff.–MitM [BDD+12]

3.5–4 296 2 1 Trunc. Diff. (EE) [GRR16a, GRR16b]
4 288 2 28 G&D–MitM [BDF11]
4 280 2 280 G&D–MitM [BDF11]
3.5 272 2 272 G&D–MitM [BDF11]
3.5–4 274.7 3 1 Trunc. Diff. (EE) [GRR16a, GRR16b]
4 272 3 28 G&D–MitM [BDF11]

3.5–4 269.7 3 212 Trunc. Diff. (EE) [GRR16a, GRR16b]
4 232 4 224 G&D–MitM [BDF11]
4 264 5 268 Diff.–MitM [BDD+12]

3.5–4 238 8 215 I-Pol [Tie16]
4 240 10 243 Diff.–MitM [BDD+12]

3.5–4 235.1 24 217 Trunc. Diff. (EB) [GRR16a, GRR16b]
3.5–4 214 29 small Integral [DKR97]

G&D: Guess and Determine – Trunc. Diff.: Truncated Differentials
I-Pol: Impossible Polytopic – EE: Extension at End – EB: Extension at Beginning

decryption can be implemented by a single circuit (see [RSQL04]).1

The key schedule can be computed in parallel with encryption, but notwith decryption, making2

slower decryption an issue inmodes of operation that change key often (unless the key schedule3

for the new key can be computed in parallel with the previous operations).4

The cipher is still too slow for very high-performance applications where power and area are a5

concern - in other words it is not a lightweight or ultra-lightweight cipher.6

3.20.5 Intellectual Property7

The designers did not patent any aspect of the cipher, which is also not encumbered by previous8

intellectual property.9

3.21 The NESSIE Block Cipher Selection10

NESSIE (New European Schemes for Signatures, Integrity and Encryption) was a European re-11

search project funded from 2000–2003 to identify secure cryptographic primitives. The project12

was comparable to the NIST AES selection process (Section 3.19 on page 177) and the Japanese13

Government-sponsored CRYPTREC project (Section 3.22 on page 194) – but the three projects14

did not necessarily reach the same conclusions. The NESSIE participants include some of the15

foremost active cryptographers in the world, as does the CRYPTREC project.16
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NESSIE’s goal was to identify and evaluate quality cryptographic designs in several categories.1

To that end a public call for submissions was issued in March 2000. Forty-two submissions2

were received, and in February 2003 twelve submissionswere selected. In addition, five publicly3

knownalgorithms thatwere not submitted to the projectwere chosen as “selectees.” The project4

has publicly announced that “no weaknesses were found in the selected designs.”5

Details for all submissions can be obtained from this web page. Of the forty-two submissions,6

seventeen were block ciphers:7

• Six 64-bit block ciphers: CS-Cipher [SV98], Hierocrypt-L1 [OMSK00, Tos01], IDEA (Sec-8

tion 3.6 on page 144), Khazad [BR02], MISTY-1 (see Section 3.18 on page 172), and Nim-9

bus [Mac00];10

• Seven 128-bit block ciphers (none of which coming from the AES process): Anubis (Subsec-11

tion 3.21.3 on page 192), Camellia (Section 3.18 on page 172), Grand Cru [Bor00], Hierocrypt-12

3 [OMSK00, Tos02], Noekeon (Subsection 3.21.4 on page 193), Q, and SC2000 [SYY+01] (see13

also Section 3.22 on page 194);14

• One 160-bit block cipher: SHACAL (see below); and15

• Three block ciphers with a variable block length: NUSH [LV00] (64, 128, and 256 bits), RC616

(at least 128 bits, see Section 3.15 on page 168), and SAFER++ (64 and 128 bits, see Sec-17

tion 3.8.3 on page 152).18

The NESSIE list of recommended block ciphers includes: MISTY-1, Camellia, SHACAL-2, and19

AES (Section 3.20 on page 182).20

With the exception of SHACAL, all the recommended block ciphers are described elsewhere in21

this document. SHACAL will be described next, together with submissions Khazad, Anubis,22

and NOEKEON.23

3.21.1 SHACAL24

SHACAL is a family of block ciphers developed byGemplus, introduced byHelenaHandschuh25

and David Naccache.26

SHACAL-1 is a 160-bit block cipher based on the hash function SHA-1. SHA-1 is designed27

around a compression function, that takes as input a 160-bit state and a 512-bit data word and28

outputs a new 160-bit state after 80 rounds. The hash function works by repeatedly calling29

this compression function with successive 512-bit data blocks and each time updating the state30

accordingly. For a fixed 512-bit data block, the transformation of the state is invertible, so the31

compression function is in fact a block cipher where the 512-bit data word is the key used to32

encrypt the 160-bit state. If keys shorter than 512 bits are to be used, these are first just padded33

with zeros.34

All full round attacks on SHACAL-1 to date are related-key attacks. The best one key attack so35

far, by Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman in [LKKD06], breaks 5236

internal rounds in time 2493 requiring about 2160 known plaintexts.37

In [Saa03],Markku-Juhani Saarinen observed that it is possible to construct slid pairs in the com-38

pression function of SHA-1 using about 297 chosen chaining values (for two different blocks of39
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message). Saarinen used the slid pairs to mount a related-key distinguishing attack against1

SHACAL-1 requiring 297 chosen plaintexts encrypted under two related keys and time com-2

plexity of 297 encryptions. Eli Biham and Orr Dunkelman and Nathan Keller in [BDK07b]3

exploit the property found by Saarinen to mount a related-key key recovery attack on the full4

SHACAL-1, using from two to eight related keys. If 𝑘 related keys are used, their attack has5

complexitymax {(𝑘 − 1) ⋅ 298.5, 2510−(𝑘−1)⋅62}. When amaximum of eight related keys are used,6

the complexity becomes 2101.3.7

SHACAL-2 has a 256-bit block size and is based on SHA-256. It has not been broken yet. The8

best attack, by Jiqiang Lu and Jongsung Kim, is a related-key attack that breaks 44 rounds out9

of 80 [LK08].10

3.21.1.1 Intellectual Property11

In theNESSIE submission package, the designers of the cipher declare: “We do not intend to apply12

for any patent covering SHACAL and undertake to up date the NESSIE project whenever necessary.”13

To our knowledge, no updates have been submitted to the NESSIE project.14

3.21.2 Khazad (and Shark)15

Paulo S.L.M. Barreto and Vincent Rijmen designed Khazad, a 64-bit block cipher with a 128-bit16

key, and submitted it to the NESSIE project in the year 2000. The specification can be found17

at the NESSIE submission web page. Khazad is a SPN designed according to the wide trail18

strategy. Although it is not a Feistel cipher, the inverse operation of the cipher differs from the19

forward operation in the key scheduling only. This is achieved choosing all round transforma-20

tion components to be involutions. This property makes it possible to reduce the required chip21

area in a hardware implementation, as well as the code and table size.22

The cipher shares some design aspects with Rijndael, in that it is a wide trail bricklayer design.23

The internal state is represented as 8 bytes, each byte is an element of 𝔽28 , and diffusion is24

provided by an 8 × 8 involutory MDS matrix over 𝐹28 with elements of low Hamming weight.25

The S-box is involutory. It is recursively constructed using two smaller 4 × 4-bit S-boxes, as26

depicted in Figure 3.27. The two 4 × 4 components are involutory themselves and have been27

generated pseudo-randomly. This S-box construction has left some legacy: the block cipher28

CLEFIA (Section 3.28 on page 203) also defines a 8-bit S-box recursively using two smaller 4×4-29

bit S-boxes, but the construction is different. The two “mini boxes” (as they are called by the30

authors) are defined as follows:31

𝑥 : 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑃[𝑥] : 3 F E 0 5 4 B C D A 9 6 7 8 2 1

𝑄[𝑥] : 9 E 5 6 A 2 3 C F 0 4 D 7 B 1 8

The diffusion layer is a linear mapping 𝜃 ∶ 𝔽 8
28 𝔽 8

28 corresponding to the [16, 8, 9] MDS code32

with generator matrix 𝐺𝐻 = [𝐼 𝐻], where 𝐻 = had (01𝑥, 03𝑥, 04𝑥, 05𝑥, 06𝑥, 08𝑥, 0b𝑥, 07𝑥), is a33
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Figure 3.27: The Khazad/Anubis Composite S-box

𝑃 𝑄

𝑄 𝑃

𝑃 𝑄

Table 3.7: Differences between Khazad and Shark

SHARK KHAZAD

Rounds 6 8

Key schedule Affine mapping derived from Feistel key evolution using the
the cipher itself in CFB mode cipher round function itself

𝔽28 definition polynomial 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 1 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1
(1F5𝑥) (11D𝑥)

S-box Inversion in 𝔽28 , followed Recursive structureby affine transformation
Origin of diffusion matrix Reed-Solomon code Involutional MDS code

Hadamard matrix1

𝐻 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

01𝑥 03𝑥 04𝑥 05𝑥 06𝑥 08𝑥 0B𝑥 07𝑥
03𝑥 01𝑥 05𝑥 04𝑥 08𝑥 06𝑥 07𝑥 0B𝑥
04𝑥 05𝑥 01𝑥 03𝑥 0B𝑥 07𝑥 06𝑥 08𝑥
05𝑥 04𝑥 03𝑥 01𝑥 07𝑥 0B𝑥 08𝑥 06𝑥
06𝑥 08𝑥 0B𝑥 07𝑥 01𝑥 03𝑥 04𝑥 05𝑥
08𝑥 06𝑥 07𝑥 0B𝑥 03𝑥 01𝑥 05𝑥 04𝑥
0B𝑥 07𝑥 06𝑥 08𝑥 04𝑥 05𝑥 01𝑥 03𝑥
07𝑥 0B𝑥 08𝑥 06𝑥 05𝑥 04𝑥 03𝑥 01𝑥

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so that 𝜃(𝑎) = 𝐻 ⋅ 𝑡𝑎. About the notation for the matrix enties: the hexadecimal numbers rep-2

resent the field elements of 𝔽28 = 𝔽 [𝑥]/(𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1) as bytes, where the 𝑖th bit is the3

coefficient of (the image of) 𝑥𝑖. For instance, 01𝑥 represents 1 and 03𝑥 represents (the image of)4

𝑥 + 1 in 𝔽28 . A simple inspection shows that matrix 𝐻 is symmetric and unitary. Therefore, 𝜃5

is an involution.6

Shark [RDP+96] is very similar to Khazad and therefore we do not perceive the need to treat7

both: the main differences are summarized in Table 3.7.8

AlsoKhazad (andAnubis) left a strong legacy on the design ofCLEFIA (Section 3.28 onpage 203)9
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since one of the two S-boxes of the latter cipher is recursively constructed from smaller 4 × 41

S-boxes, and the diffusion matrices are Hadamard matrices as well.2

3.21.2.1 Cryptanalysis3

Alex Biryukov has analysed involutional ciphers in [Bir03], including Khazad and Anubis. He4

found that there is a variant of the slide with a twist attack (cf. Subsection 2.6.3.2 on page 113)5

which can be applied to this type of designs, i.e. ciphers with involutory data encryption path6

where encryption and decryption necessarily differ only in the key schedule, and the round7

are all equal (with the exception of a final round without linear mixing layer). The attack can8

only work if some degree of symmetry can be enforced on the key schedule, which means that9

the keys must be specially selected, i.e. they form a specific class of weak keys (see Section 2.510

on page 107). An an application he broke five of Khazad’s eight rounds in time 240 requiring11

𝑂(232) memory – but only for one in 264 keys.12

FrédéricMuller [Mul03] has discovered an attackwhich can break five of Khazad’s eight rounds13

for all keys in time 291.14

3.21.2.2 Advantages15

Khazad can be implemented both in SW and HW in a very compact way. HW implementa-16

tions can be both very performing and small: As it can be seen in Table 4.1 on page 237, even17

a fully unrolled and single cycle implementation of Khazad can be much smaller than other18

comparable ciphers.19

3.21.2.3 Disadvantages20

None in particular.21

3.21.2.4 Intellectual Property22

In the NESSIE submission package, the designers of the cipher declare: “to the best of our knowl-23

edge the practice of the Khazad algorithm, as well as the reference implementations we have submitted,24

are not covered by any patents or patent applications worldwide.”25

3.21.3 Anubis26

Anubis (the specification can be found at the NESSIE submission web page), is a block cipher27

designed by Vincent Rijmen and Paulo S.L.M. Barreto that operates on data blocks of length28

128 bits, and uses keys of length 128 to 320 bits in steps of 32 bits. It is another member of the29

SQUARE/Rijndael/Khazad family, and the main differences w.r.t. Rijndael are summarized in30

Table 3.8 on the next page.31

The S-box is the same recursively defined S-box used in Khazad. The diffusion matrix is also a32

Hadamard matrix.33

There is to date no attack that has broken the cipher. The cipher was not admitted to round two34

of the NESSIE selection process only because it was deemed too similar to Rijndael.35
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Table 3.8: Differences between Anubis and Rijndael

Rijndael Anubis

Key size (bits) 128, 192, or 256 128, 160, 192, 224, 256, 288, or 320
Block size (bits) 128, 192, or 256 always 128
Number of rounds 10, 12, or 14 12, 13, 14, 15, 16, 17, or 18

key evolution based on variant
Key schedule dedicated a priori algorithm of round function, and extraction

using linear projection

𝔽28 definition polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1
(11B𝑥) (11D𝑥)

S-box Inversion in 𝔽28 , plus Recursive structureaffine transformation
Origin of the round constants polynomials 𝑥𝑖 over 𝔽28 successive entries of the S-box

3.21.3.1 Intellectual Property1

In the NESSIE submission package, the designers of the cipher declare: “to the best of our knowl-2

edge the practice of the Anubis algorithm, as well as the reference implementations we have submitted,3

are not covered by any patents or patent applications worldwide.”4

3.21.4 NOEKEON5

NOEKEON was designed and submitted to NESSIE by Joan Daemen, Michaël Peeters, Gilles6

Van Assche, and Vincent Rijmen. This SPN cipher has 128-bit key and block sizes, with 167

rounds.8

The cipher is extremely compact in both SW and HW. It is designed to be implemented using9

only bit-wise Boolean operations and (cyclic) shift operations, similarly to 3-WAY and BASEK-10

ING, which are described in Joan Daemen’s PhD Thesis [Dae95] and the AES proposal Serpent11

(Section 3.17 on page 170). Because of this it is possible to implement efficient DPA-resistant12

software implementations. Also, since several operations operate in parallel on 32 nibbles, bit-13

slicing implementations in SW or highly parallel HW architectures are possible.14

Decryption can be performed by the same circuit/program as encryption.15

The round function is composed of following steps:16

1. Key mixing, a linear transformation, further key mixing;17

2. A non-linear function called 𝛤 , sandwiched between two bit permutations.18

𝛤 can be expressed as a 4-bit S-box or as a compact straight line program – in fact all non-19

linearity is provided by the binary AND operator. The 𝛤 layer can be implemented using bit-20

slicing, allowing for very efficient implementations.21

One peculiarity of NOEKEON is that the cipher can work in two different modes which can22

be effectively considered as two different ciphers: “Direct-key mode” NOEKEON is to be used23

for maximum efficiency where related-key attacks are not possible, and “indirect-key mode”24
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NOEKEON would be used when protocols are employed that can make related-key attacks1

possible. The difference between the two modes is that in indirect-key mode a key schedule2

algorithm is used that is based on the encryption cipher itself, whereas direct-key mode just3

reuses the unchanged secret key as the subkey for all rounds.4

During the NESSIE selection process, Lars R. Knudsen and Håvard Raddum [KR01b] raised5

doubts aboutNOEKEON’s resistance under related-key attacks even if the key schedule is used.6

As a result the cipher was not selected. Despite this, no concrete attack has been published and7

the best cryptanalysis so far seems to be [ZRHD08], which breaks five rounds of NOEKEON8

with a variant of integral attacks.9

The complete specification of the cipher can be downloaded at the cipher’s web site [DPAR].10

3.21.4.1 Intellectual Property11

In the NESSIE submission package, the designers of the cipher declare: “to the best of our knowl-12

edge the practice of the Noekeon algorithm, as well as the reference implementations we have submitted,13

are not covered by any patents or patent applications worldwide.”14

3.22 The CRYPTREC Block Ciphers Recommendations15

CRYPTREC is the Cryptography Research and Evaluation Committees set up by the Japanese16

Government to evaluate and recommend cryptographic techniques for government and in-17

dustrial use. It is comparable in many respects to the European Union’s NESSIE project (Sec-18

tion 3.21 on page 188) and to the Advanced Encryption Standard process run by NIST in the19

US (Section 3.19 on page 177).20

The project is constantly reviewing the recommendations by asking several important cryptog-21

raphers to deliver regular security evaluations:22

http://www.cryptrec.go.jp/english/estimation.html.23

In August 2003 the project published a draft containing several recommendations. The recom-24

mended block ciphers were:25

• The four 64-bit ciphers CIPHERUNICORN-E [NEC13], Hierocrypt-L1 [OMSK00, Tos01],26

MISTY-1 (see Section 3.18 on page 172), 3-key Triple DES (permitted “for the time being”27

if used as specified in FIPS Pub 46-3, and if specified as a de facto standard); and28

• The five 128-bit ciphers AES (Section 3.20 on page 182), Camellia (Section 3.18 on page 172),29

CIPHERUNICORN-A [NEC13], Hierocrypt-3 [OMSK00, Tos02], and SC2000 [SYY+01].30

CRYPTREC explicitly states that 128-bit block ciphers are preferred whenever possible. In 201331

the list of recommended ciphers was considerably shortened, and now it consist only of: 3-key32

Triple DES, AES and Camellia (cf. http://www.cryptrec.go.jp/english/method.html).33

3.22.1 Remarks on some of the ciphers34

1. CIPHERUNICORN-E [NEC13] is a standard Feistel networkwith the added twist that every35

two rounds there is an additional round called an L-Function that mixes key material in a36

non-linear way. The F-function is very elaborate and uses four different 8-bit S-boxes that37
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are all based on inversion in 𝐹28 combinedwith affine transformations, but the the definition1

polynomials of the field is different for each S-box.2

2. SC2000 [SYY+01] is a block cipher designed by Fujitsu Laboratories and the Science Univer-3

sity of Tokyo. It has a block size of 128 bits and key lengths of 128, 192, and 256 bits. It is4

a complex product cipher where three types of operations, called I, B and R, are alternated5

in a regular pattern that is equal to its inverse. These functions operate on the state split as6

four 32-bit branches. They borrow from different design methodologies:7

• The I function is just key mixing by XOR.8

• The R function is a 4-branch Feistel-type round where two branches are first passed9

through an array of four 5-bit and two 6-bit S-boxes, then mixed linearly, and then some10

bits of the two results are intermixed (the L function, described later). Finally, the two11

results are XORed to the other two branches. In the cipher, the two pairs of branches are12

exchanged and there is another repetition of the R function.13

• The L function maps two 32-bit values as follows:14

(𝑎, 𝑏) (�(�𝑎 ∧ mask)� ⊕ 𝑏, (�𝑏 ∧ mask)� ⊕ 𝑎)�

where the mask can take one of the two values 55555555𝑥 and 33333333𝑥. In each15

pair of R rounds the same mask is used. The masks are alternated between different R16

round pairs.17

• The B function consists of an input linear transformation, an array of eight equal 4-bit18

S-boxes, and an output linear transformation.19

SC2000 is one of the very few ciphers around that mixes SPN-like and Feistel-type rounds20

in the data obfuscation path. All the components of the cipher have been designed to allow21

for efficient bit-slicing implementations.22

For a 128-bit key there are 7 rounds of the B function and 12 rounds of the R function. For23

larger keys, there are 8 rounds of the B function and 14 rounds of the R function. The number24

of I rounds is always twice that of the B rounds. The alternating pattern of the rounds is25

(𝐼, 𝐵, 𝐼, 𝑅 × 𝑅)∗, … , 𝐼, 𝐵, 𝐼 (where × denotes the Feistel branch swap).26

In the cryptanalytic literature an (𝐼, 𝐵, 𝐼, 𝑅 × 𝑅)-block is considered a round and the final27

(𝐼, 𝐵, 𝐼) a half-round, sowith this terminology SC2000 consists of 6.5 or 7.5 rounds depending28

on the key size. The cipher has not been broken, however differential attacks exist against29

5-round reduced SC2000 [Lu10, Lu11], and therefore the residual security margin is quite30

small.31

3.23 IDEA NXT (FOX)32

IDEA NXT is a block cipher designed by Pascal Junod and Serge Vaudenay between 200133

and 2003. The cipher was originally named FOX and was disclosed in 2003 and published34

in 2004 [JV04a]. In May 2005 it was announced by MediaCrypt under the name IDEA NXT, as35

the successor of IDEA.36
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Figure 3.28: Rounds of IDEA NXT-64 and NXT-128
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IDEA NXT has 64- or 128-bit blocks, and a variable key size up to 256 bits. It is a 16-round Lai-1

Massey scheme with an ortohomorphism, but versions with up to 255 rounds can be defined.2

IDEA NXT-64, resp. NXT-128 divides the state into two, resp. four 32-bit branches.3

The rounds of NXT-64 and NXT-128, depicted in Figure 3.28, are constructed around similar4

round functions 𝐹. The NXT-64 round function accepts a 32-bit input and a 64-bit round key.5

The NXT-128 round function accepts a 64-bit input and a 128-bit round key. Inspired by SPNs,6

𝐹 is built as follows:7

1. A key mixing layer using the first half of the round key;8

2. An S-box layer based on four, resp. eight 8-bit S-boxes;9

3. A linear diffusion layer based on an 4 × 4, resp. 8 × 8 MDS Matrix over 𝔽28 ;10

4. A second key mixing layer using the second half of the round key;11

5. A second S-box layer;12

6. A third key mixing layer that reuses the first half of the round key.13

The S-box is itself a 3-round Lai-Massey schemewith two 4-bit brancheswhose round functions14

are pseudo-randomly generated permutations on 𝔽24 .15

The ortohomorphism is a 1-round Feistel scheme with the identity as round function (i.e. it is a16

map 𝑢||𝑣 (𝑢 ⊕ 𝑣)||𝑢 where 𝑢 and 𝑣 are two halves of the input). It is omitted in the last round17

of the cipher and also in the third round of the S-box.18

The key-schedule algorithms are complex and designed to be very strong. There are three19

different versions, two for the 64-bit cipher and one for the 128-bit cipher. They recycle the20

components of the round functions.21

3.23.1 Advantages22

Encryption and decryption are the same algorithm, where only the round keys have to be used23

in the reverse order, leading to savings in code size and area.24
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3.23.2 Disadvantages1

The time to compute the subkeys is quite high (approximately equal to the time to encrypt 62

blocks, or 12 blocks for the “stronger” key schedule for the 64-bit cipher).3

3.23.3 Intellectual Property4

Patent applications cover the encryption path (U.S. Patent Application 0040247117) and the key5

schedule (U.S. Patent Application 0050053233).6

These patent applications and the need for a license in order to use IDEA NXT may influence7

the extent of its adoption, particularly given that there are viable public domain alternatives,8

e.g., AES, Serpent and the Twofish algorithm, and have no restrictions on them whatsoever.9

3.24 ICEBERG10

François-Xavier Standaert et al in 2004 introduced ICEBERG [SPR+04].11

ICEBERG operates on 64-bit blocks and uses a 128-bit key. It is a involutional 16-round SPN12

designed to be efficient when implemented on reconfigurable hardware. In particular, the de-13

sign goal was to minimise the number of 4-but LUT (look up tables) which are the basic logic14

block of FPGAs.15

ICEBERG uses two different 4-bit S-boxes called 𝑆0 and 𝑆1.16

A round consists of a non-linear substitution layer, and a two part linear diffusion layer that17

sandwiches the key mixing.18

The non-linear substitution layer operates on bytes by essentially building a 8-bit S-box out of19

the two involutory 4-bit S-boxes, in a five layer structure similar to the Khazad/Anubis con-20

struction (cf. Subsection 3.21.2 on page 190), with the same bit wiring among each two S-box21

layers, but the same S-box is applied to the two nibbles of a byte, first 𝑆0, then 𝑆1, then again 𝑆022

– as opposed to both S-boxes being used in the same layer.23

The linear diffusion cum key mixing layer consists of: bit wiring of the whole 64-bit state, via a24

permutation called P64; parallel application of multiplication of each nibble with a 4 × 4 invo-25

lutory matrix; key mixing; swap of each two adjacent bits; another application of P64.26

The key schedule is simple but it is not trivial. It is made non-linear and non-periodic by com-27

bining S-box applications, variable shifts and bit permutations. It is also symmetric, i.e. the28

master key is expanded into a sequence 𝑘0, 𝑘1, … , 𝑘7, 𝑘8, 𝑘7, … , 𝑘0.29

The only difference between encryption and decryption is in the key schedule. The same cir-30

cuit can be used for both cipher directions by modifying a single configuration bit for the key31

schedule part.32

The design goals of ICEBERG have been achieved. ICEBERG needs a total of 704 LUTs, whereas33

implementingKhazad needs 1344 LUTs according to [SRQL02] and implementingAES requires34

3376 LUTs according to [SRQL03b] (we note, however, that AES can be implemented with as35

few as 877 LUTs if 10 RAM blocks are employed on some FPGAs, cf. [SRQL03a]).36

Efficiency in software implementations is not one of the design goals of ICEBERG. But table37

lookups can be used to obtain efficient round functions using the method described in [PA93]38
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attaining performance (as claimed by the authors) comparable to Khazad. ICEBERG can also1

be implemented in bit-slice mode following [Bih97b].2

3.24.1 Intellectual Property3

We are not aware of any patents on ICEBERG. François-Xavier Standaert privately communi-4

cated to us that none of his cipher designs is patented [Sta14].5

3.25 mCrypton (and Crypton)6

At WISA 2005, Chae Hoon Lim and Tymur Korkishko [LK05] introduced mCrypton, a very7

small cipher targeted at Low-Cost RFID Tags and Sensors.8

It is a 64-bit block cipher with three key size options of 64 bits, 96 bits and 128 bits. It is essen-9

tially a “half size” SQUARE or AES. mCrypton processes an 8-byte data block by representing10

it into a 4 × 4 nibble (half byte) array. The internal state is processed by four operations: nibble-11

wise substitution using four different 4-bit S-boxes, column-wise bit permutation, matrix trans-12

position, and key addition. These operations are combined to form a 12-round SPN.13

mCrypton and Crypton [Lim99] are very similar, so we describe here only mCrypton as it is14

more interesting for our purposes. Crypton has a nearly identical structure, but it is byte ori-15

ented instead of nibble oriented. We shall limit ourselves to some comments on the differences16

between the two ciphers.17

The four S-boxes of mCrypton come in pairs that invert each other. Therefore there is no need18

for additional tables or circuits to support decryption beside encryption. In fact, the same circuit19

or program can be used to implement the data obfuscation part of the cipher, only the key has20

to be suitably modified. This was true also of Crypton.21

The nibble-wise substitution works as follows22

⎛
⎜
⎜
⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝑆0(𝑎0,0) 𝑆1(𝑎0,1) 𝑆2(𝑎0,2) 𝑆3(𝑎0,3)
𝑆1(𝑎1,0) 𝑆2(𝑎1,1) 𝑆3(𝑎1,2) 𝑆0(𝑎1,3)
𝑆2(𝑎2,0) 𝑆3(𝑎2,1) 𝑆0(𝑎2,2) 𝑆1(𝑎2,3)
𝑆3(𝑎3,0) 𝑆0(𝑎3,1) 𝑆1(𝑎3,2) 𝑆2(𝑎3,3)

⎞
⎟
⎟
⎟
⎠

and thus it commutes with matrix transposition. (Crypton has two such substitutions, which23

are byte-oriented, and one is used in the odd rounds, the other in the even rounds.)24

The column-wise bit permutation is actually a linear combination over 𝔽2 of the entries in a25

column. The 𝑖-th column (with 𝑖 = 0, 1, 2, 3) is transformed using a map 𝜋𝑖. The map 𝜋𝑖 is26

defined as follows: if two columns are represented as 𝕒 = 𝑡(𝑎0, 𝑎1, 𝑎2, 𝑎3) and 𝕓 = 𝑡(𝑏0, 𝑏1, 𝑏2, 𝑏3)27

with 𝕓 = 𝜋𝑖(𝕒), then28

𝑏𝑗 = 3⊕
𝑘=0

(𝑚𝑖+𝑗+𝑘 mod 4 ∧ 𝑎𝑘) ,

where the masks 𝑚𝑖 are defined as29

𝑚0 = 11102 , 𝑚1 = 11012 , 𝑚2 = 10112 , m3 = 01112 .

(The masks used by Crypton are, correspondingly, 8 bits long.)30
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Key scheduling is quite easy: first some data is generated through nonlinear S-box transforma-1

tion and then the other keys are generated through simple rotations. This allows key schedule2

to be performed in parallel not only with encryption but also with decryption. The same S-3

boxes used in the data encryption path are used in the key schedule, reducing coding overhead4

or memory requirements for tables.5

3.25.1 Cryptanalysis6

Mohsen Shakiba, Mohammad Dakhilalian and Hamid Mala in [SDM13] apply related-key im-7

possible differential cryptanalysis to 8 and 9 reduced versions of mCrypton-96 and mCrypton-8

128. The attack on mCrypton-96 requires 259.9 chosen plaintexts, and has a time complexity of9

about 274.9 encryptions. The data and time complexities for the attack on mCrypton-128 are10

259.7 chosen plaintexts and 266.7 encryptions, respectively.11

Kitae Jeong et al. [JKL+13] manage to apply biclique cryptanalysis to full round mCrypton, the12

resulting attacks require computational complexities of 263.18, 294.81 and 2126.56 for key sizes of13

64, 96 and 128 bits, respectively.14

3.25.2 Advantages15

mCrypton, like Crypton, is very fast. In fact, according to some tests the original cipher Crypton16

was the fastest AES submission and had also the smallest key setup overhead - what ultimately17

killed it was the presence of weak keys, as shown by Johan Borst [Bor99].18

Encryption and decryption are very similar reducing the overhead to support both: In the pa-19

per that introduced the cipher, a straightforward 1 cycle/round HW implementation required20

2400 to 3000 gates to support only encryption, and 3500 to 4100 gates for both encryption and21

decryption. Key scheduling can run in parallel with both encryption and decryption.22

3.25.3 Disadvantages23

In some scenarios other ciphers could be preferable because the overhead to implement both24

decryption beside encryption, despite being smaller than a 2x factor, is not negligible.25

3.25.4 Intellectual Property26

Weare not aware of any patents encumbering the use ofmCrypton (andCrypton), but, since the27

IP statements of the AES competition (for Crypton) seem to be no longer archived, we cannot28

be sure that there is no protected intellectual property either.29

3.26 SEA, the Scalable Encryption Algorithm30

At CARDIS 2006, François-Xavier Standaert, Gilles Piret, Neil Gershenfeld and Jean-Jacques31

Quisquater introduced the Scalable Encryption Algorithm, or SEA for short [SPGQ06].32

This is a cipher intended not to be viable for a large variety of platforms - instead, the design33

assumes very limited processing resources and throughput requirements, targeting very low34

memory requirements for both data and code, at the price of performance.35

An important design choice is that the cipher has parameters that can be adjusted to the char-36

acteristics of the target platform. As a result, the cipher SEA𝑛,𝑏 has a block and key size 𝑛 and37
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Figure 3.29: Data Encryption and Key Schedule Rounds of SEA
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𝑟 𝑆

𝑘𝑖

𝑅 𝑟 𝑆

𝐶𝑖

a word size 𝑏. The word size 𝑏 is ideally the processor’s word size (which can be emulated on1

architectures with a different word size, but at a price) and 𝑛 is a multiple of 6𝑏.2

Hence, as the authors examplify, using an 8-bit processor, one can derive 48-, 96-, 144-, …-bit3

block ciphers, respectively denoted as SEA48,8, SEA96,8, SEA144,8, and so on.4

SEA𝑛,𝑏 is constructed from a reduced number of basic operations operating on words, namely5

bitwise XOR, AND and OR, addition modulo 2𝑏, and bit rotation.6

The structure of the cipher is a 2-branch balanced Feistel network tweaked with a rotation of a7

branch. The round key is mixed at the beginning of the F-function. The key schedule is also8

based on a 2-branch balanced Feistel networkwhere round constants aremixed at the beginning9

of the F-function as well.10

Modular addition is used for the key/round constant mixing, whereas the output of the F-11

functions are mixed to the target branch using bitwise XOR.12

The F-function involves a 3-bit S-box applied in parallel to the input, and a word-wise bit rota-13

tion. The 3-bit S-box is applied in a bit-slicing way to each three words of the input, and can be14

implemented using a short program of logical operations.15

Resistance against several known attacks and some variants is also proved in [SPGQ06]. The16

proofs imply that the required number of rounds to meet the desired resistance level is quite17

high, namely, the number 𝑛𝑟 of rounds is an odd number larger than18

3𝑛
4 + 2(𝑛𝑏 + ⌊𝑏/2⌋) ,

where 𝑛𝑏 = 𝑛/(2𝑏) is the number of words per Feistel branch – and in fact it is suggested in the19

paper to at least double that number.20

3.26.1 Description21

In Figure 3.29 single rounds of the data encryption path and of the key schedule of SEA are22

shown.23

Representing a branch as (𝑥𝑛𝑏−1, 𝑥𝑛𝑏−2, … , 𝑥1, 𝑥0), the building blocks of the rounds are24

• 𝑅 is a rotation of the words by one position, i.e. 𝑥𝑖 𝑥𝑖+1 and 𝑥𝑛𝑏−1 𝑥0;25
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• 𝑟 replaces three adjacent words 𝑥3𝑖+2‖𝑥3𝑖+1‖𝑥3𝑖 by (𝑥3𝑖+2 ⋘ 1)‖𝑥3𝑖+1‖(𝑥3𝑖 ⋙ 1);1

• 𝑆 is the bit-slicing S-box2

𝑥 : 0 1 2 3 4 5 6 7

𝑆[𝑥] : 0 5 6 7 4 3 1 2

It acts on three adjacent words in a bit-sliced way and can be implemented purely by logic3

operations as follows4

𝑆(𝑥3𝑖+2‖𝑥3𝑖+1‖𝑥3𝑖) = 𝑥′
3𝑖+2‖𝑥′

3𝑖+1‖𝑥′
3𝑖 where

𝑥′
3𝑖 = (𝑥3𝑖+2 ∧ 𝑥3𝑖+1) ⊕ 𝑥3𝑖 ,

𝑥′
3𝑖+1 = (𝑥3𝑖+2 ∧ 𝑥3𝑖) ⊕ 𝑥3𝑖+1 , and

𝑥′
3𝑖+2 = (𝑥3𝑖 ∨ 𝑥3𝑖+1) ⊕ 𝑥3𝑖+2 .

Another interesting aspect of SEA is that the key schedule is symmetric.5

The round keys 𝑘𝑖 for 0 ⩽ 𝑖 ⩽ ⌊𝑛𝑟/2⌋ are given by 𝑘𝑖 = 𝑘𝑅
𝑖 , whereas for ⌊𝑛𝑟/2⌋ < 𝑖 < 𝑛𝑟 the same6

sequence is used in reverse order, starting with 𝑘⌊𝑛𝑟/2⌋+1 = 𝑘𝑅
⌊𝑛𝑟/2⌋−1. 𝐶𝑖 is a 𝑛𝑏 word vector of7

which all the words have value 0 excepted the least significant word, that equals 𝑖 – hence only8

one word is effectively modified by a modular addition.9

The round key sequence can be generated entirely in parallel with encryption (and decryption)10

without having to store previous values, using a nifty programming trick that consists in undo-11

ing the Feistel swap of the key schedule after the middle round and using the round constants12

in reverse order, thus undoing each partial “encryption” step. Therefore, for ⌊𝑛𝑟/2⌋ < 𝑖 < 𝑛𝑟13

one can use 𝑘𝑖 = 𝑘𝐿
𝑖 . More details and an example implementation can be found in [SPGQ06].14

The fact that the same round keys are used in two different orders is a trait in commonwith the15

GOST block cipher (cf. Section 3.4 on page 140) and it is the same sequence used in the cipher16

ICEBERG [SPR+04] (Section 3.24 on page 197).17

The SEA F-functions bear some resemblance to the GOST F-function in that they consist ofmod-18

ular addition followed by an S-box layer and rotation – however these operations are also fun-19

damentally different in some crucial aspects: the rotations are either “local” inside thewords or20

are essentially word based permutations; the S-box layer, by working simultaneously on three21

words in parallel also contributes to diffusion, together with the fact that the amounts of the22

subsequent rotations inside the same word triplets.23

3.26.2 Cryptanalysis24

To the best of our knowledge there has been no successful cryptanalysis of SEA.25

3.26.3 Advantages26

SEA can be implemented easilywithminimal code and data footprint. It is adaptable to various27

architectures.28
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3.26.4 Disadvantages1

SEA is quite slow and with a high latency, due to the very high number of rounds – this is only2

partially mitigated by the simplicity of each round.3

On very limited architectures such as the ATMEL ATtiny45, it performs better than some other4

ciphers, such as DESXL and KATAN, and it is less than 3 times slower than HIGHT (Sec-5

tion 3.27), mCrypton (Section 3.25 on page 198) andNOEKEON (Subsection 3.21.4 on page 193)6

as one can see in Table 4.2 on page 240, that is taken from [EGG+12]. However, despite having a7

very small code footprint and using very little memory, it does not have a strong advantage over8

the other credited ciphers, and it is on the power-hungry side. The tests reported in Table 4.49

on page 242 (from [CMM13]), performed on a TI MSP 430 16-bit RISC microcontroller, do not10

paint a better picture, with ciphers such as TWINE (Section 3.34 on page 215) and XTEA (Sec-11

tion 3.12 on page 161) being faster, requiring less RAMand having a smaller code footprint, and12

several others, such as HIGHT, showing performance and RAM usage with code only about13

10% bigger.14

3.26.5 Intellectual Property15

SEA is not patented [Sta14].16

3.27 HIGHT17

Introduced in 2006 by a team from the Center for Information Security Technologies (CIST),18

Korea University, the Department of Mathematics, University of Seoul, and the South Korean19

National Security Research Institute (NSRI), HIGHT [HSH+06] is an ultralightweight a block20

cipher with 64-bit block length and 128-bit key length. HIGHT is used as a standard encryption21

algorithm (TTAS.KO-12.0040) in South Korea.22

It was designed for low-resource hardware implementation, such as a sensor nodes or RFID23

tags, but at the same time withstand the same level of cryptanalysis of a generic encryption24

algorithm. In fact, HIGHT was designed to withstand several types of cryptanalysis: nearly all25

types of known cryptanalytic methods are discussed in the original paper.26

The cipher is a 8-branch type-2 Feistel network. All branches are 8-bit wide. It consists of 3227

rounds with pre and post key whitening, where some of the keys are added, other are XORed28

to bytes of the state. A round is depicted in Figure 3.30.29

Figure 3.30: A Round of HIGHT

in0 in1 in2 in3 in4 in5 in6 in7

out0 out1 out2 out3 out4 out5 out6 out7

𝐹1 𝐹0 𝐹1 𝐹0

𝑘4𝑖 𝑘4𝑖+1 𝑘4𝑖+2 𝑘4𝑖+3
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The functions 𝐹0 and 𝐹1 are here linear functions that guarantee gooddiffusion, the nonlinearity1

being ensured only by the use of algebraically incompatible arithmetic operations.2

The key schedule generates the whitening and round keys by bit rotation and addition mod-3

ulo 256 of predefined constants. There seems to be no hidden rationale for the generation of4

these constants: these are generated by a simple LFSR over 𝔽27 , another incompatible algebraic5

structure.6

3.27.1 Cryptanalysis7

The best attacks so far are impossible differential attacks. In [öVTK09] a 26-round impossible8

differential attack with time complexity of 2119.53 (reduced round) encryptions is described,9

that is improved to 2114.35 in [CWP12], where 27 rounds can also be attacked, but with time10

only slightly better than brute force. In [öVTK09] 31 rounds are broken by a related-key variant11

of the attack with time only slightly better than exhaustive search.12

3.27.2 Intellectual Property13

We are not aware of patents encumbering the use of HIGHT.14

3.28 CLEFIA15

CLEFIA is a proprietary block cipher algorithm, jointly developed by Sony and the University16

of Nagoya and presented in 2007 [SSA+07, SON07, SON10]. SONY has a website dedicated to17

this algorithm. http://www.sony.net/Products/cryptography/clefia/18

The name is derived from the French word clef, meaning “key.” It has been standardized as the19

lightweight block cipher at the 128-bit block size level as ISO/IEC 29192 (Lightweight Cryptog-20

raphy) Part 2: Block ciphers (PRESENT was chosen for the 64-bit block size level).21

It is a 128-bit block cipher with a 4-branch Type 2 Feistel network. Each branch is 32 bits wide.22

The rationale for using this design can be summarised in the fact that the F-functions are smaller23

than in a corresponding 2-branch design and that there are more opportunities for parallel24

processing. However, it also tends to require more rounds than the traditional Feistel structure,25

and to counter this issue the Diffusion Switching Mechanism principle (see below) is adopted26

in the cipher.27

The overall structure of the encryption algorithm is represented in Figure 3.31: The design is in28

our opinion extraordinarily elegant. CLEFIA has 18, 22 and 26 rounds for 128-bit, 192-bit and29

256-bit keys, respectively. It useswhitening keys (𝑤𝑘) at the beginning and the end of the cipher,30

and round keys (𝑟𝑘). In each round two different F-functions are used: These are formed by31

keymixing, an S-box layer and diffusion bymeans of multiplication with a 4×4matrix over 𝔽28 .32

There are two different matrices for the two F-functions. The common structure of the two F-33

functions is represented in Figure 3.32 on the next page: The figure represents the F-function F0;34

The 32-bit input is split into four 8 bit values, which are rejoined after the linear transform 𝑀035

on the vector formed by the four outputs of the S-boxes. F1 is similar, with 𝑆0 and 𝑆1 exchanged36

and a different linear transform 𝑀1 in place of 𝑀0.37

An especially interesting design decision is that of the two S-boxes 𝑆0 and 𝑆1. Whereas 𝑆138

is similar to the Rijndael S-box (inversion in 𝔽28 composed with affine transformations), 𝑆0 is39
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Figure 3.31: CLEFIA’s Feistel Structure
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Figure 3.32: CLEFIA’s F-function F0
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Figure 3.33: CLEFIA’s First S-box 𝑆0

𝑆𝑆0 𝑆𝑆2

⋅𝑧

⋅𝑧

𝑆𝑆1 𝑆𝑆3

in out

defined recursively by combining four smaller 4 × 4-bit S-boxes S SS𝑖 for 𝑖 = 0, 1, 2, 3. as shown1

in Figure 3.33. The “multiplication by 𝑧” ismultiplication by (the image of) 𝑧 in 𝔽24 ∶= 𝔽 [𝑧]/(𝑧4+2

𝑧 + 1). As a result of the two very different design approaches, the two S-boxes have different3

strengths, as seen in Table 3.9.4

Table 3.9: Security Parameters of the Clefia S-boxes

𝑆0 𝑆1

Max. differential prob. 2−4.67 2−6.00

Max. linear prob. 2−4.38 2−6.00

Min. algebraic degree 6 7
Min. number of terms over 𝔽28 244 252

The use of two different matrices follows the Diffusion Switching Mechanism design principle5

by Taizo Shirai and Kyoji Shibutani [SS04] (cf. Subsection 1.8.4 on page 54). These define linear6

transformations of 4-dimensional vector fields over 𝔽28 and they have been chosen so that the7

branch numbers ℬ𝑀0
= ℬ𝑀1

= 5, i.e. they are maximal, and also the composed matrices8

𝑀0‖𝑀1 and 𝑡𝑀−1
0 ‖𝑡𝑀−1

1 have branch number 5. The matrices themselves have been obtained9

by searching circulant and Hadamard-type matrices, looking for matrices of low weight and10
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that can be implemented efficiently in hardware due to low XOR gate count. The choice fell1

then on two Hadamard-type MDS matrices, as in Khazad (Subsection 3.21.2 on page 190) and2

Anubis (Subsection 3.21.3 on page 192).3

The key schedule of CLEFIA is also a Type 2 Feistel network but this time with eight equally4

wide branches. The same two F-functions are used – each twice per key schedule round – and5

instead of round keys predefined constants are used. These constants are derived from the6

binary expansions of 𝑒 − 2 and 𝜋 − 3, in order to maximize diffusion according to the Diffusion7

Switching Mechanism technique. 32-bit whitening keys 𝑤𝑘𝑖 and round keys 𝑟𝑘𝑖 are generated.8

The round keys are considered as arrays of four 8-bit values in the F-functions. In other words,9

the design is more conventional than it appears from the specifications, as the round key is just10

used to mask a branch before feeding the value to a single round SP network – the output of11

which is then XORed to another branch.12

3.28.1 Cryptanalysis13

Shortly after the presentation of the cipher, Yukiyasu Tsunoo et al. [TTS+08] show the exis-14

tence of 9-round impossible differentials for CLEFIA and use it to attack some reduced round15

versions of the cipher. 12 rounds of CLEFIA-128, 13 rounds of CLEFIA-192, and 14 rounds of16

CLEFIA-256 are attacked with the time complexities 2119, 2146, and 2212, respectively.17

An improbable differential attack breaks 13 rounds of CLEFIA-128 with a time complexity of18

2126.83 [Tez10a, Tez10b]. Similar attacks apply to 14 and 15 round reduced versions of CLEFIA19

for the key sizes 192 and 256 bits, respectively. We note that the validity of the improbable20

differential cryptanalysis has been recently challenged by Celine Blondeau [Blo13].21

In [LWZ11] Yanjun Li, Wenling Wu and Lei Zhang present a 9-round integral distinguisher for22

CLEFIA and use it on to attack 12, 13 and 14-round CLEFIA with whitening keys. 12-round23

CLEFIA-128/192/256 is attacked with time complexity 2116.7, 13-round CLEFIA-192/256 with24

time complexity 2180.5, and 14-round CLEFIA-256 with time complexity 2244.5.25

Multidimensional zero correlation linear cryptanalysis with FFT [BGW+13] breaks 14 rounds26

of CLEFIA-192 in time 2180.2 and 15 rounds of CLEFIA-256 in time 2244.2, essentially improving27

on some of the attacks in [LWZ11] by one round at roughly the same time complexity.28

3.28.2 Intellectual Property29

The cipher is patented, but SONY has declared that it “is prepared to make licenses available to use30

CLEFIA technology under CLEFIA essential patents on fair, reasonable and non-discriminatory terms.”31

The patents (and patent applications) covering CLEFIA we are aware of are:32

• U.S. Patent Application 2013/0016829 (priority: Japan Patent Application 2003-339364);33

• U.S. Patent Application 2012/0324243 (priority: Japan Patent Application 2004-256465);34

• U.S. Patent Application 2010/0061548 (priority: Japan Patent Applications 2006-206376 and35

-224674);36

• U.S. Patent 8577023 (priority: Japan Patent Application 2006-238225);37

• Japan Patent 2008-058830 (Japan Patent Application 2006-238227); and38
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Figure 3.34: The PRESENT pLayer
Bit (4i+j) is sent to position (16j+i) with 0 ⩽ 𝑖 < 16 and 0 ⩽ 𝑗 < 4.

• U.S. Patent 8369522 (priority: Japan Patent Application 2006-238228).1

The list has been derived from the list of Japan Patent Applications given in the CRYPTREC2

submission package for CLEFIA.3

3.29 PRESENT4

PRESENT is a 64-bit block cipher developed by Andrey Bogdanov et al. and introduced at5

CHES 2007 [BKL+07]. There are two versions, with keys of 80 and 128 bits respectively, called6

PRESENT-80 and PRESENT-128. It was designed for low-cost devices like RFID-tags.7

PRESENT is a SPNwith 31 rounds and one final key addition. Each round consists of: a round8

key addition, a substitution layer, and a permutation layer.9

A single 4-bit S-box is applied to all nibbles of the 64-bit state, and its action, interpreting the10

nibbles as hexadecimal digits, is given by the following table:11

𝑥 : 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑆[𝑥] : C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

This S-box was designed with cryptanalytic resistance in mind. Conditions were posed on the12

S-box to improve the so-called avalanche of change:13

1. For any output difference, there are most four inputs differences.14

2. There are no single bit input differences that give single bit output differences.15

3. Let 𝑆𝓌
𝑏 (𝑎) be the Walsh-Fourier coefficient of 𝑆 (as defined in Subsection 2.2.8 on page 95).16

Then for all non-zero 𝑎, 𝑏 ∈ 𝔽 4
2 we require that |𝑆𝓌

𝑏 (𝑠)| ⩽ 8.17

4. For all 𝑎, 𝑏 ∈ 𝔽 4
2 both with Hamming weight equal to 1 it holds that |𝑆𝓌

𝑏 (𝑎)| = 4.18

These conditions help against linear and differential attacks by bounding from above the prob-19

abilities of linear trails and differential characteristics (in this context, property 2. is important20

since there is no proper diffusion layer).21

The permutation layer is a pure bit permutation layer, given in Figure 3.34.22

A notable aspect of this cipher is that it is one of the few contemporary SPNs with a pure bit23

permutation layer.24
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Table 3.10: Cryptanalysis of PRESENT – Published Results

Rounds Attack Complexity
Version Attacked Technique Time Data Memory Reference

80 16/31 Differential 264.0 264.0 232.0 [Wan08]
80 18/31 Multiple diff. 264.0 264.0 232.0 [BG11b, BG11a]
80 18/31 Multiple diff. 276.0 239.0 232.0 [BG11b, BG11a]
80 18/31 Multiple diff. 278 262 213 [BN13]
80 24/31 Linear 240.0 263.5 240.0 [Ohk09]
80 24/31 Statistical sat. 257.0 257.0 232.0 [CS09]
80 26/31 Multiple linear 272.0 264.0 232.0 [Cho09, Cho10]

128 8/31 Integral 2100.1 224.3 277.0 [ZRHD08]
128 17/31 Related keys 2104.0 263.0 253.0 [öVTK09]
128 18/31 Multiple diff. 2124.0 264.0 232.0 [BG11b, BG11a]
128 19/31 Algebraic diff. 2113.0 262.0 𝑛/𝑟 [AC09]
128 19/31 Multiple diff. 2126 262 260 [BN13]
128 25/31 Linear 296.7 264.0 240.0 [NSZW09]

Key schedule is very simple: in the case of 80-bit keys, an 80 bit register containing the secret1

key is rotated by 61 positions to the left, the least significant nibble is passed through the S-box,2

and then the value of a counter is XORed to some of the bits of the register. The round key is3

just the leftmost 64 bits of this register. In the case of 128-bit keys, the round key register is 1284

bits wide and two nibbles are passed through the S-box.5

3.29.1 Cryptanalysis6

PRESENThas received a lot of attention by the research community but, due to its sounddesign,7

has withstood cryptanalysis well.8

All attacks disclosed so far are on reduced-round versions.9

Linear cryptanalysis seems to have fared better in attacking PRESENT than differential crypt-10

analysis, as can be seen in Table 3.10, that reports the cryptanalysis done to date.11

There are no significant biclique based results to date, all the attempts to date shaving off less12

than one bit of complexity from brute force attack [AFL+12, JKL+12].13

3.29.2 Intellectual Property14

We are aware of no patents encumbering PRESENT.15

The cipher has been standardised in ISO/IEC 29192 Part 2: Block ciphers.16

3.30 Threefish17

The tweakable block cipher Threefishwas introduced in 2009 as part of the Skein hash function,18

a SHA-3 competition candidate [FLS+10]. Threefish is an SPN with a block size of 256, 512, or19

1024 bits, the key size being always equal to the block size, and the number of rounds being 72,20

72 and 80 for the three block/key sizes, respectively. The tweak input is always 128 bits.21

One of Threefish’s most striking features is its simplicity: all fundamental operations work on22
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Figure 3.35: The Threefish MIX Function
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Figure 3.36: Four Rounds of Threefish-512
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64-bit blocks, and non-linearity is based on a single, simple MIX function, alternated with a1

fixed permutation layer of 64-bit blocks.2

The MIX function is represented in Figure 3.35, whereas four rounds of Threefish are depicted3

in Figure 3.36, in the case of Threefish-512.4

The round rotation constants 𝑅𝑟,𝑖 are taken from three tables (for the 256-, 512-, and 1024-bit5

versions). The key schedule is quite simple and involves modular additions, permutations of6
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thewords of the round keys, andXORwith a fixed constant chosen, among randomly generated1

values (encrypting increasing valueswithAES-256with a zero key), in order to defeat rotational2

attacks (see below).3

Noteworthy aspects: the key mixing is done only each four rounds, an idea used later also in4

LED (Subsection 3.37.4 on page 229). The MIX function is extremely simple and has influenced5

later designs, such as SIMON (Section 3.36 on page 222). The permute operation is, literally, a6

permutation of the 64-bit words of the state, and is fixed.7

3.30.1 Remarks8

Threefish is quite fast in SW implementations: Threefish-512 encrypts data at 6.1 clock cycles9

per byte on a 64-bit Intel CPU.10

3.30.2 Cryptanalysis11

Using rotational cryptanalysis, Dmitry Khovratovich and Ivica Nikolić in 2010 presented the12

best cryptanalytic attacks at that time against a reduced-round Threefish cipher [KN10]. A13

follow-up attack from the same authors andChristian Rechberger [KNR10] breaks up to 53 of 7214

rounds in Threefish-256, and 57 of 72 rounds in Threefish-512 – breaking also the corresponding15

collision resistance in Skein.16

3.30.3 Intellectual Property17

Bruce Schneier, on the Submitter Statement accompanying the submission of Skein to the SHA-18

3 context, wrote: “I, Bruce Schneier, hereby declare that, to the best of my knowledge, the practice of19

the algorithm, reference implementation, and optimized implementations that I have submitted, known20

as Skein, may be covered by the following U.S. and/or foreign patents: none. I do hereby declare that21

I am aware of no patent applications that may cover the practice of my submitted algorithm, reference22

implementation or optimized implementations.”23

Since Threefish is part of Skein, the same holds for Threefish.24

3.31 The KATAN/KTANTAN Family25

The KATAN/KTANTAN family [CDK09] contains six block ciphers divided into two flavors,26

called KATAN and KTANTAN. All block ciphers share the 80-bit key size and security level.27

Both flavors contain ciphers with 32, 48, or 64-bit block sizes. The ciphers in the KTANTAN28

flavor are more compact in hardware than their KATAN counterparts as the key is burnt into29

the device (and cannot be changed).30

This cipher is profoundly different from most designs we have seen so far, in fact it resembles31

a stream cipher. In this, it follows the example of KeeLoq (Subsection 3.3.3 on page 138). The32

design of the KATAN/KTANTAN block cipher family is inspired by that of the stream cipher33

Trivium [CP05, CP08] – which in turn was designed to be analyzed with methods from the34

theory of block ciphers.35

Figure 3.37 shows the structure of KATAN/KTANTAN.36

The plaintext is first copied into the two registers 𝐿1 and 𝐿2, which have coprime lengths that37

add up to the block length (for instance, for KATAN-32 the lengths are 13 and 19 bits).38
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Figure 3.37: The Structure of KATAN/KTANTAN

IR

Then at each clock the two registers function as two “interleaved” NLFSRs as described in the1

figure, where the feedback bits are fixed parameters of the system. A round consists in one2

clock of this circuit. At each round two key schedule bits are mixed in as depicted.3

In the Figure IR stands for Irregular update Rule: at irregular intervals the bit IR determined4

whether a bit of 𝐿1 is actually mixed in or not. IR is actually the most significant bit in a small5

8-bit LFSR defined by polynomial 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 1 that begins with all ones and after 2546

cycles will reach a predetermined state, at that point the cipher will stop. The use of IR will de-7

termine de facto an irregular sequence of two different update functions, and LFSR properties8

will guarantee that no function will be used more than seven times in a row, limiting attacks.9

The two key bits 𝑘𝑎 and 𝑘𝑏 are derived from an 80-bit LFSR initialized with the secret key and10

clocked twice each round.11

At the end of the 254 rounds the content of the registers 𝐿1 and 𝐿2 is the ciphertext.12

Careful choice of the parameters makes the cipher easily invertible reusing the same hardware.13

The cipher is extremely simple and is designed for low power low gate count applications. Its14

simplest implementation has a relatively low throughput, but, depending on the number of15

output bits that are simultaneously computed, this can be significantly increased at a relatively16

small price in area.17

KTANTAN uses less resources since the secret key is hardwired in the circuit.18

The designers of KATAN and KTANTAN did not patent any aspect of the cipher family.19

3.31.1 Cryptanalysis20

Simon Knellwolf, Willi Meier and María Naya-Plasencia [KMNP11] apply their technique of21

Conditional Differential Cryptanalysis [KMNP10] to mount attacks on KATAN in a related-22

key scenario and obtain practical key-recovery attacks for 120, 103 and 90 of 254 rounds of23

KATAN-32, KATAN-48 and KATAN-64, respectively. Similar results hold for KTANTAN.24

Andrey Bogdanov and Christian Rechberger in [BR10] exploit some weaknesses in the key25

schedule of KTANTAN, i.e. some irregularities that cause some rounds to be influenced by26

some key bits and not by other bits, and mount a MITM attack with overlapping key sub-27
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sets. They succeed to break full KTANTAN-32, resp. KTANTAN-48 using only three plain-1

text/ciphertext pairs and 275.170, resp. 275.044 encryptions, as well as full KTANTAN-64 using2

2 plaintext/ciphertext pairs and 275.584 encryptions.3

3.31.2 Advantages4

Very simple design. Easy to implement in HW with extremely reduced gate count. Uses very5

little power.6

3.31.3 Disadvantages7

Slow performance. Too many rounds, hence very hard to reduce latency. Key length and block8

size are small.9

3.31.4 Intellectual Property10

We are aware of no patents on KATAN/KTANTAN.11

3.32 PRINTcipher12

Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew Robshaw introduced PRINT-13

cipher in 2010 [KLPR10] to cater to the needs of adding cryptography to printed IC (integrated14

circuits) and exploit the opportunities offered by this medium.15

On one hand an IC printed onto a variety of mediums using silicon ink must meet heavy size16

constraints, whence the cryptographic components must use an extremely low gate count. On17

the other hand for most applications of this technology (such as RFID tags) the key can be fixed18

(and therefore it becomes an “identity” of the circuit) and therefore one can dispense with the19

traditional key schedule: IC printing makes hardwiring a different key onto a circuit very easy,20

whereas conventional IC manufacturing creates identical circuits and, whereas a specific tag21

can be personalisedwith a unique key, this represents an additional post-fabrication step (PUFs,22

i.e. physically unclonable functions, are an alternative, but not without their own drawbacks).23

The PRINTcipher family was designed for this context. It is a 𝑏 = 48 or 96-bit block cipher. The24

effective key size is (5/3)𝑏. It is a SPN with 𝑟 = 𝑏 rounds. A round (in the case of 𝑏 = 48) is25

represented in Figure 3.38 on the next page. A fixed 𝑏-bit key is given “numerically” (but it is26

still hardwired in the system), whereas (2/3)𝑏 further bits of algorithm variability are encoded27

in the circuit itself.28

A round of encryption works as followed:29

1. First, the state is xored with a round key 𝑠𝑘1.30

2. Then, the cipher state is shuffled using a fixed linear diffusion layer. This layer sends bit 𝑖 to31

bit 3𝑖 mod (𝑏 − 1) for 𝑖 < 𝑏 − 1 and bit 𝑏 − 1 to 𝑏 − 1.32

3. The least significant 6 or 8 (for 𝑏 = 48, 96 respectively) bits of the cipher state are xored with33

a round constant that is generated using an LFSR.34

4. The state is transformed using a layer of key dependent permutations and an array of 𝑏/335

identical 3-bit S-boxes:36
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Figure 3.38: A Round of PRINTcipher
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(a) The input to each S-box is first permuted in a key-dependent permutation layer: Four1

possible permutations are defined, providing each the equivalent of two additional bits2

of key material for each three bits of the state. For each S-box the same permutation3

– once chosen – is used in the same position in every round. The four permutations,4

for the choices (00), (01), (10) and (11) of key bits, send a bit triple (𝑐2 𝑐1 𝑐0) to (𝑐2 𝑐1 𝑐0),5

(𝑐1 𝑐2 𝑐0), (𝑐2 𝑐0 𝑐1), and (𝑐0 𝑐1 𝑐2), respectively.6

(b) Each bit triple is then transformed non linearly using the same S-box.7

The (5/3)𝑏-bit key 𝑘 is considered as consisting of two sub keys 𝑠𝑘1 and 𝑠𝑘2 where 𝑠𝑘1 is 𝑏 bits8

long and 𝑠𝑘2 is (2/3)𝑏 bits long. The first subkey is used, unchanged, in the xor layer of each9

and every round, and each of the 𝑏/3 pairs of bits of the second sub key selects the permutation10

applies to the corresponding S-box.11

The S-box is a 3-bit S-box, chosen because it can be realised with only 11GE, whereas 4-bit S-12

boxes require on average 28GE. This makes the whole substitution layer 50% less expensive,13

but also weaker – this fact is compensated by the high number of rounds.14

𝑥 : 0 1 2 3 4 5 6 7

𝑆[𝑥] : 0 1 3 6 7 4 5 2

The combination of key dependent permutation and S-box results the facto in a keyed S-box,15

where, however, 0 is always mapped to 0 and 7 to 2. For each key bit pair the resulting combi-16

nation has always exactly two fixed points.17

The 3-bit S-box has been chosen to be optimal with respect to linear and differential properties,18

and to minimise the number of single-bit to single-bit differences (that is, there is exactly one).19

An interesting property (which could have crypto analytic implications) is the following: For20

any 3-to-3-bit permutation 𝑃, there exist constants 𝑐 and 𝑑 (depending on 𝑃) such that21

𝑆(𝑃(𝑥)) = 𝑃(𝑆(𝑥 ⊕ 𝑐)) ⊕ 𝑑 for all 𝑥 .
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3.32.1 Cryptanalysis1

In [ALZ11] twodifferential attacks aremounted against 22 rounds of PRINTcipher-48, requiring2

the full code book and about 248 computational steps. One attack works by first determining3

the (fixed) keyed permutations.4

In [LAAZ11] the existence of invariant subspaces is proven formoderately sized classes of weak5

keys: 252 out of 280 for PRINTcipher-48 and 2102 out of 2160 for PRINTcipher-96. The existence6

of invariant subspaces stems from the fact that there exist subsets of all S-boxes that aremapped7

onto themselves for specific sets of inputs and carefully chosen keys. The search for these sub-8

spaces is helped by the fact that the key mixing is the same in each round. The key remark9

is that in PRINTcipher the probability of truncated differential characteristics, the bias for sta-10

tistical saturation attacks, and the bias of linear hulls are extremely key-dependent and that11

for a weak key, increasing the number of rounds up to the full number of rounds does not in-12

crease the security of the cipher with respect to these attacks. For example, when weak keys13

are used there is at least one linear approximation for PRINTcipher-48 with bias at least 2−17,14

and truncated differential characteristics with probability 2−16.15

The approach in [LAAZ11] has been further investigated=, finding 64 families of weak keys16

for PRINTcipher-48 and as many as 115,669 for PRINTcipher-96, which have been found using17

Mixed Linear Integer Programming. At least 245 weak keys for PRINTcipher-48 can be recov-18

ered in less than 20 minutes per key on a single PC using only a few chosen and one known19

plaintexts.20

Martin Ågren and Thomas Johansson [ÅJ11a, ÅJ11b] also investigate the strength of the cipher21

under weak keys. They find even more families for reduced round variants. For instance, 2822

rounds can be broken for half of the keys, and 29 rounds for a fraction 2−5 of the keys.23

3.32.2 Remarks24

The combination of a key dependent bit permutation and a fixed S-box is equivalent to the25

choice among four S-boxes depending on key bits, a design strategy that goes back to the early26

history of block cipher design, cf. Lucifer (Section 3.1 on page 128).27

3-bit S-boxes have beenusedpreviously in other ciphers, such as 3-way [DGV93] and the Scaleable28

Encryption Algorithm [SPGQ06] (see Section 3.26 on page 199) while key-dependent algorithm29

features have appeared in a variety of block ciphers including Blowfish (Section 3.9 on page 157),30

Twofish (Section 3.13 on page 164), and GOST (Section 3.4 on page 140).31

The large classes of weak keys in PRINTcipher showcases the disadvantages of choosing key32

dependent permutations, which can partially undo some of the advantages of the chosen fixed33

permutation layers. This is exacerbated by the fact that the key schedule is trivial: The same34

key bit is always mixed at the same place, and in fact hardwired: in correspondence of a one35

in the key there is a NOT gate in the circuit. This is a consequence of the design rationale: the36

round must be iterated, and the round constant mixing is minimal.37

On the other hand, the large number of rounds makes the mixing of a round constant only to38

the last six or eight significant bits of the state a wise choice: they are completely diffused after39

just two or three rounds (i.e. the round constant makes, in the case of PRINTcipher-48, two40

S-boxes active, six in the next round, and 16 in the round after that – a similar computation41

shows that all 32 S-boxes are active after three rounds in PRINTcipher-96).42
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3.33 BelT1

BelT is a Belarusian block cipher. The actual name is СТБ 34.101.31-2011. СТБ is an acronym2

for (Государственный) Стандарт, (Республики) Беларусь, i.e. (State) Standard, (the Republic of)3

Belarus. The information reported here has been taken from the original standards document4

in Russian, which is available from http://apmi.bsu.by/assets/files/std/belt-spec27.pdf. The5

current version was standardised in 2011.6

The cipher has a block size of 128 bits and a key size of 128, 192, or 256 bits. Keys shorter than7

256 bits are just padded to 256 bits.8

It is an 8-round cipher, where the rather complex round structure is inspired by Feistel networks9

and the Lai-Massey design. A round is depicted in Figure 3.39 on the next page.10

BelT is a four-branch structure, with 32-bit branches.11

In each round the four branches – 𝑎, 𝑏, 𝑐 and 𝑑 – are considered as two pairs – the first consisting12

of 𝑎 and 𝑏, the second comprising 𝑐 and 𝑑 – each of which is mixed in a three-round Feistel13

network. However, the two parallel Feistel network are mixed in the middle (after two rounds14

of the network of 𝑎 and 𝑏, and after the first round of the network of 𝑐 and 𝑑), by applying a15

Lai-Massey round to branches 𝑏 and 𝑐. The Lai-Massey structure is additive (we mentioned16

this possibility in Section 1.5 on page 37, cf. Figure 1.6).17

Nonlinearity is given by the use of incompatible algebraic operations (arithmetic modulo 23218

and bitwise XOR) and by three different 32-bit to 32-bit functions 𝐺𝑖 (with 𝑖 = 5, 13, 21). The19

functions 𝐺𝑖 consists of parallel applications of a single 8-bit S-Box to all four bytes of the input20

followed by a cyclic rotation of the whole 32 bit word to the left by 𝑖 bits – the rotation amounts21

are the largest Fibonacci numbers smaller than 32, skipping the 8 for obvious reasons. These22

rotation amounts have been chosen to provide the fastest diffusion, protect against some attacks,23

and also to simplify software implementation, as they are all congruent to 5 modulo 8.24

The F-functions of both the Feistel components and of the Lai-Massey component consists in25

key mixing (addition modulo 32) and application of one of the functions 𝐺𝑖 – in other words26

they are just half-size GOST-like F-functions. The output of the F-function in the Lai-Massey27

component is then further “tweaked” by the XOR of the round constant round number (from28

1 to 8) in its binary representation, padded with zeros.29

The whole round is terminated by a Nyberg-like branch permutation.30

The key 𝐾 is just split into eight 32-bit words 𝜃1, … , 𝜃8 and the 56 round keys 𝑘1, … , 𝑘56 just31

repeat the sequence 𝜃1, … , 𝜃8 seven times. These 56 values are then used for the rounds 𝑖 =32

1, 2, … , 8 as indicated in Figure 3.39 on the next page. This key schedule is reminiscent of that33

of NewDES (Subsection 3.3.2 on page 136).34

3.33.1 Remarks35

There is no publicly disclosed cryptanalysis. We performed some tests on the BelT S-box and36

did not found significant biases, but it seems to be less optimal than the Rijndael S-box. The37

design rationale was not disclosed.38

We do not know whether aspects of the cipher are patented.39

This cipher is just one of many current efforts ongoing in the republics of the former Soviet40
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Figure 3.39: A Round of BelT
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Union to develop alternatives to western ciphers. We mention them briefly since they are just1

variations on the AES theme:2

• Russia is developing a cipher called Кузнечик (Kuznechik, i.e. “Grasshopper” in Russian)3

which should be a 10-round AES-like SPN that uses a 16 × 16 MDS matrix over 𝔽28 in place4

of the 4 × 4 MDS matrix used in Rijndael. The Kuznechik key schedule is a Feistel network5

with constants as round keys, each round giving a round key for the main cipher.6

• Ukraine is developing Калина (Kalyna, the ukrainian name of the national flower of Ukraine,7

i.e. the Guelder rose), an AES-like cipher with key and block sizes of 128, 256 and 512 bits, It8

uses 8×8MDSmatrices in the linear diffusion steps, and employs four non-CCZ-equivalent9

8-bit S-boxes in place of a single one. The key schedule is itself an AES-like SPN. Kalyna is10

optimised for 64-bit processors and uses 64-bit modular addition for key whitening steps.11

3.34 TWINE12

TWINE was developed by NEC and presented in 2012 [SMMK12]. Its designers are Tomoy-13

asu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi. It is an interesting14

design building on previous theoretical work by Tomoyasu Suzaki and Kazuhiko Minematsu15

on improvements to multi-branch Feistel networks to reduce the number of rounds necessary16

to achieve full diffusion [SM10].17

TWINE is a 64-bit block cipher with 80 and 128-bit key lenghts. It was designed for small18

hardware implementation and efficient embedded software realization.19
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Figure 3.40: A Round of TWINE
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It is a generalized 16-branch Type 2 Feistel-like network with a complex branch permutation in1

place of a simple rotation. Each branch is just 4 bits wide. A round is represented in Figure 3.40.2

The number of rounds is 36.3

The design is very interesting for a few reasons. The F-function is minimal: it consists of key4

mixing and a single S-box, this simplicity being compensated by the large number of branches.5

But, most importantly, it shows how the distinction between SPN and Feistel network is in fact6

blurred: if we group the branches two by two as a sequence of 8 bytes, the XORing of the keyed7

transform (F-function) of a nibble to the right can be seen as the combination of key mixing8

with an substitution layer on the bytes – “incomplete” in the sense that four of the eight bytes9

are left unchanged – followed by a bit (in fact, nibble) permutation layer. This interpretation10

could have been made for previous Type 2 Feistel designs as well, but TWINE makes it very11

clear.12

The S-box was chosen to satisfy following requirements:13

1. Themaximumdifferential and linear probabilities are 2−2, which is the theoreticalminimum14

for an invertible S-box;15

2. The algebraic degree is 3; and16

3. The interpolation polynomial is as dense as possible and has degree 14.17

The design of the S-box is inspired by the AES S-box, i.e. it is defined as 𝑦 = 𝑆(𝑥) = 𝑓 ((𝑥 ⊕ 𝑏)−1)18

where 𝑏 = 1 is a 4-bit constant, the inversion is over the field 𝔽24 = 𝔽 [𝑧]/(𝑧4 + 𝑧 + 1) and 𝑓 is an19

affine transformation. The resulting S-box is:20

𝑥 : 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑆[𝑥] : C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

Since the deepest element in the cipher is the 4-Bit S-box and it is a Feistel cipher, the critical21

path traverses 18 S-boxes and key-mixing operations and we estimate that a critical path of less22

than 100 GE is achievable.23

The design of the branch shuffle used in TWINE is explained in Subsection 1.8.2 on page 44.24
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3.34.1 Cryptanalysis1

The cipher is very recent, so there is not much in the direction of cryptanalysis yet. The paper2

that presented TWINE contains considerable cryptanalitic arguments to justify the design.3

There is some biclique cryptanalysis, shaving only fractions of a bit from the cipher’s secu-4

rity [ÇKöB12, KDH13].5

3.34.2 Intellectual Property6

Japanese Patent Application PCT/JP2012/006314 covers aspects of TWINE, such as the branch7

permutation.8

3.34.3 LBlock9

The cipher LBlock [WZ11] despite superficial differences, is in fact quite similar to TWINE.10

LBlock is presented as a classic Feistel design, i.e. the 64-bit state is partitioned into two 32-bit11

halves. An array of different S-boxes operates nibble-wise after key mixing, then the 4-bit out-12

puts are permuted before being XORed. If the structure is “unrolled” the “shuffle” in LBlock13

encryption is the same as the “shuffle” used in TWINE decryption. Hence, there are enough14

similarities that the two ciphers are often analyzed in the same paper, as the above cited crypt-15

analysis exemplifies.16

3.35 PRINCE17

Introduced in 2012 [BCG+12a], PRINCE is a 64-bit block cipher with a 128-bit key. It is an18

iterative cipher with heterogeneous rounds, designed with following goals in mind for a HW19

implementation:20

1. The cipher can perform instantaneous encryption anddecryption, within a single clock cycle.21

There is no warm-up phase. In particular there should be negligible key setup overheads22

for both encryption and decryption. This was achieved by dispensing with key expansion23

altogether.24

2. If implemented in modern chip technology, low delays resulting in moderately high clock25

rates can be achieved.26

3. The hardware costs are moderate (i.e., considerably lower than fully unrolled versions of27

AES or PRESENT).28

PRINCE has a completely symmetric structure: the encryption circuit is used unchanged for29

decryption. It has a property its designers call 𝛼-reflection, i.e. decryption with key 𝑘 is per-30

formed by encrypting with key 𝑘 ⊕ 𝛼 for a constant 𝛼 that is hardwired in the design of the key31

schedule. This property prevents the cipher from being an involution.32

This is achieved by using the idea of a reflector, introduced by Arthur Scherbius, the inventor33

of the ENIGMA machine: Encryption uses both a keyed function 𝑓𝐾 and its inverse 𝑓 −1
𝐾 , and34

an involutory operation 𝑅 called a reflector. Then 𝐸𝐾 = 𝑓 −1
𝐾 ∘ 𝑅 ∘ 𝑓𝐾. However, this makes the35

cipher an involution, and using results of Youssef, Tavares, andHeys at SAC 96 [YTH96] proved36
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Figure 3.41: The Structure of PRINCEcore
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bounds on the number of fixed points of these operations, and in fact DES has weak keys that1

make the cipher involutory.2

The concept is therefore generalized in PRINCE by masking the key after the reflection point:3

𝐸𝐾 = 𝑓 −1
𝐾+𝛼 ∘ 𝑅 ∘ 𝑓𝐾. Such a cipher is called a reflection cipher, i.e. a cipher such that there is4

a permutation of the key space 𝑃 with the property that 𝐸−1
𝐾 = 𝐸𝑃(𝐾) (this definition is very5

general, for instance RSA with 𝑃 = inversion modulo (𝑝 − 1)(𝑞 − 1) is a reflection cipher).6

Key whitening is used to further strengthen the cipher. The key whitening is non-symmetric7

in order to prevent variants of slide attacks [DKS12]: The 128-bit key 𝑘 is split into two 64-bit8

halves 𝑘0 and 𝑘1. The key 𝑘0 together with the derived value 𝑘′
0 = (𝑘0 ⋙ 1)⊕ (𝑘0 ≫ 63) are used9

for key whitening, whereas 𝑘1 is used for a 12 round iterative core cipher, called PRINCEcore.10

Figure 3.41 shows the structure of PRINCEcore. The first six rounds of PRINCEcore consist of11

a key addition, the addition of a round constant, an S-box layer 𝑆, and a linear layer 𝑀. The12

last six rounds are the inverse of the first six rounds, and thus are composed of the inverse13

operations that form the initial rounds, that is: a linear layer 𝑀 that inverts 𝑀, the inverse S-14

Box layer 𝑆, and a key addition with the addition of a round constant. Between the first and the15

last six rounds there is an invertible linear transformation 𝑀′: the final liner transformation of16

the sixth round and the initial liner transformation of the seventh round are subsumed into it.17

The middle transform 𝑀′ is the reflector in the PRINCEcore design. Note that 𝑅𝐶11−𝑖 = 𝑅𝐶𝑖 ⊕ 𝛼18

and therefore 𝐸−1
𝐾 = 𝐸𝐾⊕𝛼.19

3.35.1 The S-box20

The S-box is defined as follows:21

𝑥 : 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑆[𝑥] : B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

It was chosen in order to satisfy following requirements.22

1. The maximal probability of a differential is 1/423

2. There are exactly 15 differentials with probability 1/4.24
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3. The maximal absolute bias of a linear approximation is 1/4.1

4. There are exactly 30 linear approximations with absolute bias 1/4.2

5. Each of the 15 non-zero component functions has algebraic degree three.3

Up to affine equivalence there are only eight S-boxes fulfilling those criteria [LP07]. Since this4

S-box is not involutory, its inverse must be implemented as well.5

3.35.2 The Linear Transformations6

The linear transformations 𝑀 and 𝑀′ are defined by 64 × 64 matrices over 𝔽2 which have been7

designed with the aim to have the lowest possible density under the condition that at least 168

S-boxes are active in 4 rounds by a superbox argument. Trivially, this implies that each output9

bit of an S-box has to influence three S-boxes in the next round and therefore the minimum10

number of ones per row and column is three. If this can be achieved, HW implementation will11

be as inexpensive as possible.12

The 𝑀′-layer is only used in the middle round, thus it is required to be an involution to ensure13

the 𝛼-reflection property. The designers then first defined 𝑀′ and then put 𝑀 = 𝜋 ∘ 𝑀′ where14

𝜋 is a permutation of the 16 nibbles of the state. Defining 𝑀 in terms of 𝑀′ further simplifies15

both HW and SW implementations.16

3.35.2.1 The Nibble Permutation17

The permutation 𝜋 simply maps the 𝑖-th nibble to the (5 𝑖 mod 16)-th position – and this is just18

wiring in hardware. This operation is in fact a ShiftRows: Indeed, if we put the 16 nibbles19

of the state in a square matrix, then 𝜋 acts as follows on the state20

15 11 7 3
14 10 6 2
13 9 5 1
12 8 4 0

3 15 11 7
6 2 14 10
9 5 1 13
12 8 4 0

,

where nibbles number 0 and 15 are the least and the most significant ones, respectively.21

3.35.2.2 The Diffusion Matrix22

The matrix 𝑀′ is defined as follows. We first define 4 × 4 matrices23

𝑀0 =
⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

, 𝑀1 =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

, 𝑀2 =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

, 𝑀3 =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

.

Then �̂�(0) is defined as the 16 × 16 anti-circulant block matrix whose first row of blocks is24

defined by (𝑀0, 𝑀1, 𝑀2, 𝑀3), and �̂�(1) as the 16×16 anti-circulant block matrix whose first row25
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of blocks is defined by (𝑀1, 𝑀2, 𝑀3, 𝑀0), explicitly:1

�̂�(0) =
⎛
⎜
⎜
⎜
⎝

𝑀0 𝑀1 𝑀2 𝑀3
𝑀1 𝑀2 𝑀3 𝑀0
𝑀2 𝑀3 𝑀0 𝑀1
𝑀3 𝑀0 𝑀1 𝑀2

⎞
⎟
⎟
⎟
⎠

, �̂�(1) =
⎛
⎜
⎜
⎜
⎝

𝑀1 𝑀2 𝑀3 𝑀0
𝑀2 𝑀3 𝑀0 𝑀1
𝑀3 𝑀0 𝑀1 𝑀2
𝑀0 𝑀1 𝑀2 𝑀3

⎞
⎟
⎟
⎟
⎠

.

Finally, 𝑀′ is the 64 × 64 block diagonal matrix with (�̂�(0), �̂�(1), �̂�(1), �̂�(0)) as diagonal block.2

The matrix 𝑀′ is an involution with 232 fixed points, which is roughly the expected average for3

a randomly chosen involution over a set of cardinality 264.4

There is an equivalent way to represent the operation 𝑀′ that makes the wide trails pedigree5

of the cipher explicit. First, put the bits of the state into a 4 × 16 matrix as follows:6

63 62 61 60 47 46 45 44 31 30 29 28 15 14 13 12
59 58 57 56 43 42 41 40 27 26 25 24 11 10 9 8
55 54 53 52 39 38 37 36 23 22 21 20 7 6 5 4
51 50 49 48 35 34 33 32 19 18 17 16 3 2 1 0

The rows of each 4 × 4 square of bits are the nibbles of the state. The actual building block for7

𝑀′ is the following map on four bits of a column of this matrix:8

𝑥 =
⎛
⎜
⎜
⎜
⎝

𝑥3
𝑥2
𝑥1
𝑥0

⎞
⎟
⎟
⎟
⎠

(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)
⎛
⎜
⎜
⎜
⎝

1
1
1
1

⎞
⎟
⎟
⎟
⎠

⊕ Rot𝑛𝑖

⎛
⎜
⎜
⎜
⎝

𝑥0
𝑥1
𝑥2
𝑥3

⎞
⎟
⎟
⎟
⎠

where Rot𝑛𝑖
is a cyclic rotation by 𝑛𝑖 places towards the top. For the 16 columns of the matrix9

above, read from left to right, the sequence of the 𝑛𝑖 is: 3,2,1,0; 0,3,2,1; 0,3,2,1; 3,2,1,0. This10

second representation makes it clear that 𝑀′ works on 4 subspaces of dimension 16 over 𝔽211

in parallel and that its purpose is to ensure diffusion into 16-bit superboxes. Hence, it is a12

MixColumns operation.13

3.35.3 The Key Schedule14

Wenote that there are no real round keys. At each round the same key 𝑘1 is added, togetherwith15

the round constant (so one could claim that the key schedule is just the addition different round16

constants to the secret key). The first round constant is zero, the constants 𝑅𝐶𝑖 for 𝑖 = 1, … , 517

and 𝑖 = 11 are successive 64-bit chunks of the binary expansion of the fractional part of 𝜋, the18

remaining constants satisfy 𝑅𝐶11−𝑖 = 𝑅𝐶𝑖 ⊕ 𝑅𝐶11.19

This design and choice of the constants imply that PRINCEcore possesses the 𝛼-reflection prop-20

erty. For any key 𝑘1, decrypting with key 𝑘1 is performed by encrypting with 𝑘1 ⊕ 𝛼, where21

𝛼 = c0ac29b7c97c50dd = 𝑅𝐶11. Decryption reuses the same circuit for encryption. For the22

complete cipher PRINCE, the key whitening must be performed in reverse.23
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3.35.4 Cryptanalysis1

Table 3.11 lists several publicly available cryptanalytic results pertaining to PRINCE. Note that2

the chosen 𝛼 and related key attack techniques do not immediately apply to most applications.3

Also attacks limited to PRINCEcore are not immediately applicable because practical applica-4

tions will not use the core cipher in isolation.5

Table 3.11: Cryptanalysis of PRINCE – Selected Published Results

Rounds Attack Complexity
Cipher Attacked Time Data Memory Technique Reference

PRINCE 4/12 264 24 24 Integral [JNP+13]
PRINCE 4/12 243.4 32 KP 226.7 Differential/Logic [DP15]
PRINCE 4/12 5 sec. 210 ⋘ 227 MitM [DP15]
PRINCE 4/12 223.9 48 48 Integral [Mor17]
PRINCE 4/12 27.4 64 negl. Integral [RR16c]
PRINCE 5/12 221.4 32 32 Integral [RR16c]
PRINCE 5/12 213 213 32 Integral [RR16c]
PRINCE 6/12 264 216 216 Integral [JNP+13]
PRINCE 6/12 232.9 214.9 ⋘ 227 Differential/Logic [DP15]
PRINCE 6/12 286+286 MA 2 KP 224.6 Acc. Exh. [RR16a]
PRINCE 6/12 224.6 213 213 Integral [RR16c]
PRINCE 7/12 252.1 234.6 234.6 Higher Order Diff. [Mor17]
PRINCE 7/12 244.3 233 233 Higher Order Diff. [RR16c]
PRINCE 8/12 2124 1 or 2 220 MitM [CNPV13a, CNPV13b]
PRINCE 8/12 260 253 230 MitM [LJW13]
PRINCE 8/12 250.7 * 216 284.9 MitM [DP15]
PRINCE 8/12 265.7 * 216 268.9 MitM [DP15]
PRINCE 9/12 251.21 246.89 252.21 Mult. diff. [CFG+14]
PRINCE 10/12 268 257 241 MitM [LJW13]
PRINCE 10/12 260.62 257.94 261.52 Mult. diff. [CFG+14]
PRINCE Full 2125 2 negl. Ad hoc, Single key [JNP+13]
PRINCE Full 264 233 233 Related key [JNP+13]

PRINCE 8/12 2122.7 2 KP negl. Optimised Search [RR16b]
PRINCE 8/12 2109.3 2 KP 265 MitM [RR16b]
PRINCE 10/12 2124.1 2 KP negl. Optimised Search [RR16b]
PRINCE 10/12 2122.2 2 KP 253.3 MitM [RR16b]
PRINCE Full 2125.5 2 KP negl. Exhaustive Search [JNP+13]
PRINCE Full 2125.1 2 KP negl. Optimised Search [RR16b]

PRINCEcore 2/12 232 232 232 Differential [ALL12]
PRINCEcore 4/12 256 248 248 Differential [ALL12]
PRINCEcore 4/12 28 24 24 Integral [JNP+13]
PRINCEcore 5/12 221 5 ⋅ 24 28 Integral [JNP+13]
PRINCEcore 6/12 230 216 216 Integral [JNP+13]
PRINCEcore 8/12 253 253 228 MitM [LJW13]
PRINCEcore Full 263 240 28 Biclique [ALL12]
PRINCEcore Full 239 239 239 Related key bmrg. [JNP+13]

PRINCEcore Full 241 241 negl. Single key bmrg.
(chosen 𝛼) [JNP+13]

Modified S-box 10/12 253.61 250.42 254.00 Mult. diff. [CFG+14]
Modified S-box 11/12 262.43 259.81 263.39 Mult. diff. [CFG+14]

*: Online time, negl.: negligible, Acc. Exh.: Accelerated Exhaustive Search
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However, there are several attacks that have come quite close to significantly reducing the se-1

curity of the full cipher. This means that the security margin is perhaps too small.2

3.36 SIMON and SPECK3

On February 12th, 2013, a team of cryptologists with the NSA released performance data for4

two new families of block ciphers, called SIMON and SPECK. This was followed on June 19th,5

2013 by the release of the specifications [BSS+13], and on August 22, 2013 Ray Beaulieu, one of6

the designers, gave a public presentation at the CHES 2013 Rump Session in Santa Barbara.7

Both ciphers are designed to perform well in lightweight applications, but SIMON is tuned for8

optimal performance in hardware, and SPECK for optimal performance in software, especially9

on microcontrollers. Here, lightweight does not imply low latency.10

For values 𝑛 = 16, 24, 32, 48 and 64 of a parameter called word size, the block size is always 2𝑛11

and the key size can be 𝑚𝑛 where 𝑚 = 2, 3 or 4 - but not all block size/key size combinations12

are possible: the ten admissible combinations are given in Table 3.12.13

Table 3.12: Some Parameters for SIMON and SPECK

SIMON SPECK

Block Size Key Size(s) n m Rounds Sequences Rounds (𝛼, 𝛽)
32 64 16 4 32 𝑧0 22 (7, 2)
48 72, 96 24 3, 4 36, 36 𝑧0, 𝑧1 22, 23 (8, 3)
64 96, 128 32 3, 4 42, 44 𝑧2, 𝑧3 26, 27 (8, 3)
96 96, 144 48 2, 3 52, 54 𝑧2, 𝑧3 28, 29 (8, 3)
128 128, 192, 256 64 2, 3, 4 68, 69, 72 𝑧2, 𝑧3, 𝑧4 32, 33, 34 (8, 3)

The notation SIMON-𝑥𝑥/𝑦𝑦, resp. SPECK-𝑥𝑥/𝑦𝑦, denotes SIMON, resp. SPECK, with 𝑥𝑥-bit14

blocks and 𝑦𝑦-bit keys.15

At the moment of this writing there is no cryptanalysis of these two designs. They can both be16

defined as Feistel networkswith nonlinearity provided by the use of algebraic diverse structures17

and not by the use of substitution layers.18

One interesting aspect of the paper [BSS+13] is that it contains gate counts for several imple-19

mentations of each cipher and each allowed key size/block size combination, for several possi-20

ble gate count/performance tradeoffs. As many as 10 different implementations are reported,21

for instance for Simon-96/96, going from a 1160 GE implementation requiring 2743 cycles to22

process one block to a 1790 GE implementation requiring just 57 cycles. The fact that a 50% in-23

crease in gate count leads to a nearly 50-fold increase in throughput is one of the most extreme24

documented examples in the literature.25

The designers of SIMON and SPECK declare in [BSS+13] “the algorithms presented are free from26

any intellectual property restrictions. This release does not constitute an endorsement of these algorithms27

for official use.”28
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Figure 3.42: A Round of SIMON
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Figure 3.44: The SIMON Key Schedule for 𝑚 = 3
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Figure 3.45: The SIMON Key Schedule for 𝑚 = 4
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3.36.1 SIMON1

SIMON is a classic Feistel network. It makes use of following operations on 𝑛-bit words: ⊕, the2

bitwise XOR; ∧, the bitwise AND; and left circular shifts. SIMON is a Feistel network with the3

following keyed round function4

𝑅𝑘 ∶ 𝔽 𝑛
2 × 𝔽 𝑛

2 → 𝔽 𝑛
2 × 𝔽 𝑛

2
(𝑥, 𝑦) (𝑦 ⊕ 𝑓 (𝑥) ⊕ 𝑘, 𝑥)

where5

𝑓 (𝑥) = ((𝑥 ⋘ 1) ∧ (𝑥 ⋘ 8)) ⊕ (𝑥 ⋘ 2)

and 𝑘 is the round key. The number of rounds ranges from 32 for SIMON-32/64 to 72 for6

SIMON-128/256, and is given in detail in Table 3.12 on the facing page.7

The designers of SIMON decided against including plaintext and ciphertext whitening steps,8

as inclusion of such operations can adversely affect circuit size.9

The key schedules for 𝑚 = 2, 3, 4 i.e. key lengths 2𝑛, 3𝑛 and 4𝑛, respectively, are depicted in10

Figures 3.43, 3.44 and 3.45, where all paths are 𝑛 bits wide. The key schedules are simple FSRs11

with input based on simple XORs and circular shifts.12

One bit round constants are XORed in specifically for the purpose of eliminating slide proper-13
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ties and circular shift symmetries. These constants come from five periodic sequences 𝑧0, … , 𝑧4,1

of periods 31 or 62. Sequences 𝑧0 and 𝑧1 have period 31, are generated by 5-bit LFSRs, and are2

used for block sizes of 32 and 48 bits:3

𝑧0 = 1111101000100101011000011100110 …
𝑧1 = 1000111011111001001100001011010 …

Sequences 𝑧2, 𝑧3 and 𝑧4 are for larger blocks. They are obtained by XORing the sequences 𝑧0,4

𝑧1 and the period 31 sequence5

1000111011111001001100001011010 …

respectively with the period two sequence 01010101 …, and thus have period 62. Which se-6

quence is used for each block size/key size combination is detailed in Table 3.12. Details about7

the definition of the three period 31 sequence are found in the paper [BSS+13]. The constant 𝑐8

is the number 2𝑛 − 4 = ff...fc𝑥.9

3.36.1.1 Remarks10

The key schedule is a fascinating aspect of SIMON and, as we shall see, also of SPECK. In fact11

Bruce Schneier commented thusly on his blog: “I was most impressed with their key schedule. I am12

always impressed with how the NSA does key schedules.” It is very simple and uses little resources,13

yet it does slowly, relentlessly and irregularly confuse its output, even though it is essentially a14

linear operation.15

In fact, all the non-linearity in SIMON comes from a single AND operation in the round func-16

tion. And the two inputs are the same input rotated in a different way. Therefore, on average,17

a bias of the Hamming way of this operation towards the low values is to be expected. This is a18

drastic simplification ofmore classical approacheswhere the results of twoANDoperations are19

combined (where, for instance, one operand of an AND operation is the bitwise negation of an20

operand to the other AND operation, i.e., a 2-to-1 multiplexer). Furthermore, if we exclude the21

purely linear XORwith 𝑥 ⋘ 2 in the round function, we easily see that 𝑥 (𝑥 ⋘ 1)∧(𝑥 ⋘ 8) is22

not surjective (since the set of positions of zeros in the result is the union of the sets of positions23

of the zeros in 𝑥 ⋘ 1 and in the rotation of the latter, no results with just a single zero bit are24

possible), and non surjective round functions have led to weaknesses in the past [RPW97].25

3.36.1.2 Cryptanalysis26

SIMON is a very recent cipher, and there only a few cryptanalytic results so far. In Table 3.13 on27

the facing page we report the best attack so far. Somemore research has been recently reported,28

namely [ALLW13b] and [ABG+13], but the results therein are not included here because they29

are worse. The paper [AL13] contains results obtained with impossible differentials cryptanal-30

ysis, but these are consistently much worse than the results obtained via classical differentials31

cryptanalysis, so we omit them and refer to the paper for the actual results.32

3.36.2 SPECK33

SPECK makes use of the following operations on 𝑛-bit words: ⊕, the bitwise XOR; +, integer34

addition modulo 2𝑛; and left and right circular shifts.35
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Table 3.13: Cryptanalysis of SIMON – Published Results

Rounds Attack Complexity
Cipher Attacked Technique Time Data Memory Reference

SIMON 32/64 19/32 Differential 232 231 – [BRV14]
SIMON 48/72 18/36 Differential 243.3 246.4 224 [AL13]
SIMON 48/72 20/36 Differential 252 246 – [BRV14]
SIMON 48/96 18/36 Differential 243.3 246.4 224 [AL13]
SIMON 48/96 20/36 Differential 275 246.4 – [BRV14]
SIMON 64/96 24/42 Differential 258.4 262.0 232 [AL13]
SIMON 64/96 26/42 Differential 263.9 263.0 231 [ALWL14]
SIMON 64/128 24/44 Differential 258.4 262.0 232 [AL13]
SIMON 64/128 26/44 Differential 294 263.0 231 [ALWL14]
SIMON 96/96 35/52 Differential 293.3 293.2 237.8 [ALWL14]
SIMON 96/144 29/54 Differential 283.7 287.5 248 [AL13]
SIMON 96/96 35/54 Differential 2101.1 293.2 237.8 [ALWL14]
SIMON 128/128 40/68 Differential 2120.5 2124.8 264 [AL13]
SIMON 128/128 46/68 Differential 2125.7 2125.6 240.6 [ALWL14]
SIMON 128/192 40/69 Differential 2120.5 2124.8 264 [AL13]
SIMON 128/192 46/69 Differential 2142 2125.6 240.6 [ALWL14]
SIMON 128/256 40/72 Differential 2120.5 2124.8 264 [AL13]
SIMON 128/256 46/72 Differential 2206 2125.6 240.6 [ALWL14]

SPECK is an iterated cipher with following keyed round function1

𝑅𝑘 ∶ 𝔽 𝑛
2 × 𝔽 𝑛

2 → 𝔽 𝑛
2 × 𝔽 𝑛

2
(𝑥, 𝑦) (((𝑥 ⋙ 𝛼) + 𝑦) ⊕ 𝑘, (𝑦 ⋘ 𝛽) ⊕ ((𝑥 ⋙ 𝛼) + 𝑦) ⊕ 𝑘)

with rotation amounts 𝛼 = 7 and 𝛽 = 2 for the 32-bit block size and 𝛼 = 8 and 𝛽 = 3 in all other2

cases. A graphical representation of a round of SPECK is given in Figure 3.46 on the next page.3

The number of rounds ranges from 22 for SPECK-32/64 to 32 for SPECK-128/256. The exact4

values for each block size/key size combination are given in Table 3.12 on page 222.5

The designers acknowledge that the SPECK round function shares similarities to the mixing6

function of the Threefish block cipher (cf. Figure 3.35 on page 208 in Section 3.30), while at the7

same pointing out some significant differences (for instance, rotation amounts are fixed, there8

are no word permutations). Also, it is immediately seen that each round of SPECK can be split9

into two heterogeneous Feistel rounds which are performed in alternating fashion, namely,10

𝑅(1)(𝑥, 𝑦) = (𝑦, ((𝑥 ⋙ 𝛼) + 𝑦) ⊕ 𝑘)
𝑅(2)(𝑥, 𝑦) = (𝑦, (𝑥 ⋘ 𝛽) ⊕ 𝑦) .

The key schedule, represented in Figure 3.47 on the following page, is very clever. It reuses the11

round function 𝑅. The secret key is written as 𝐾 = ℓ𝑚−2‖ … ‖ℓ0‖𝑘0 as a concatenation of 𝑛-bit12

words, where ℓ0, ℓ1, … , ℓ𝑚−2 are copied into a circular buffer and 𝑘0 in a separate register. Then13

both 𝑘0 and the last word of the circular buffer are fed to the round function 𝑅 using the round14
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Figure 3.46: A Round of SPECK
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Figure 3.47: The SPECK Key Schedule
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number 𝑖 as the key:1

ℓ𝑖+𝑚−1 = (𝑘𝑖 + (ℓ𝑖 ⋙ 𝛼)) ⊕ 𝑖
𝑘𝑖+1 = (𝑘𝑖 ⋘ 𝛽) ⊕ ℓ𝑖+𝑚−1 .

One of the two outputs of the round function is placed in the circular buffer, the other output2

is the successive round key.3

Similarly to SIMON, also SPECK does not include plaintext and ciphertext whitening steps.4

3.36.2.1 Remarks5

With respect to SIMON, the round function also reveals a minimalistic source of non-linearity:6

a single arithmetic addition, which, for inputs of low density, is well approximable with linear7

functions. The key schedule, on the other hand, is non linear, and this may be an improvement.8

3.36.2.2 Cryptanalysis9

SPECK is a very recent cipher, and there only a few cryptanalytic results so far. In Table 3.14 on10

the next page we report the complexities of some recent attacks. The paper [ALWL14] contains11

also several results obtained via rectangle attacks: these always worse than the differential12

cryptanalysis and thereforewe omitted them (with one exception). Howeverwe refer the reader13

to the paper for the technique and more the detailed results.14

3.37 A Miscellanea of Recent Lightweight Designs15

3.37.1 KLEIN16

KLEIN (which means “small” in German), proposed in 2010 by Zheng Gong, Svetla Nikova17

and Yee-Wei Law [GNL11] is another “mini AES.” It is a SPN with a 64-bit block size and key18

sizes of 64, 80 and 96 bits, with 12, 16 or 20 rounds, respectively. The 64-bit state is treated as a19

vector of 16 nibbles. The operations on the state are:20

1. Adding a round key.21
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Table 3.14: Cryptanalysis of SPECK – Published Results

Rounds Attack Complexity
Cipher Attacked Technique Time Data Memory Referemnce

SPECK 32/64 10/22 Differential 229.2 229 216 [ALWL14]
SPECK 32/64 11/22 Differential 246 214 222 [Din14]
SPECK 32/64 12/22 Differential 251 219 222 [Din14]
SPECK 32/64 13/22 Differential 257 225 222 [Din14]
SPECK 32/64 14/22 Differential 263 231 222 [Din14]
SPECK 48/72 12/22 Differential 243 243.2 – [BRV14]
SPECK 48/72 14/22 Differential 265 241 222 [Din14]
SPECK 48/96 12/23 Differential 243 243.2 – [BRV14]
SPECK 48/96 15/23 Differential 289 241 222 [Din14]
SPECK 64/96 15/26 Differential 261.1 261 232 [ALWL14]
SPECK 64/96 16/26 Differential 263 263 – [BRV14]
SPECK 64/96 18/26 Differential 283 261 222 [Din14]
SPECK 64/128 16/27 Differential 263 263 – [BRV14]
SPECK 64/128 19/27 Differential 2125 261 222 [Din14]
SPECK 96/96 15/28 Differential 289.1 289 248 [ALWL14]
SPECK 96/96 16/28 Differential 285 284 222 [Din14]
SPECK 96/144 15/29 Differential 289.1 289 248 [ALWL14]
SPECK 96/144 17/29 Differential 2133 285 222 [Din14]
SPECK 128/128 16/32 Differential 2111.1 2116 264 [ALWL14]
SPECK 128/128 17/32 Differential 2122.1 2122 264 [AL13]
SPECK 128/128 17/32 Differential 2113 2113 222 [Din14]
SPECK 128/192 16/33 Differential 2111.1 2116 264 [ALWL14]
SPECK 128/192 18/33 Differential 2177 2113 222 [Din14]
SPECK 128/256 16/34 Differential 2111.1 2116 264 [ALWL14]
SPECK 128/256 18/34 Rectangle 2182.7 2125.9 2121.9 [ALWL14]
SPECK 128/256 19/34 Differential 2241 2113 222 [Din14]

2. Transforming all nibbles through a 4-bit S-box.1

3. Permuting the nibbles (using a cyclic rotation).2

4. A linear combination of the nibbles (actually done in parallel on two groups of 8).3

The S-box was chosen to satisfy conditions similar to the PRESENT (Section 3.29 on page 206)4

S-box, but since it is involutive some conditions had to be slightly relaxed.5

The key schedule is a kind of Feistel network. It is agile even if keys are frequently changed and6

is designed to avoid potential related-key attacks.7

We are aware of no patents encumbering KLEIN.8

A survey of the current attacks on KLEIN is given in Table 3.15 on the next page.9
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Table 3.15: Cryptanalysis of KLEIN – Published Results

Rounds Attack Complexity
Version Attacked Technique Time Data Memory Reference

64 7/12 Integral 245.5 234.3 232 [YWLZ11]
64 8/12 Truncated diff. 246.8 232 216 [YWLZ11]
64 8/12 Differential 235 235 – [ANPS11]
64 10/12 Parallel-Cut MITM 262 1 260 [NWW13b]
64 Full Biclique 262.84 239 24.5 [ASA13]
64 Full Differential 257.07 254.5 216 [LNP14]
80 8/16 Integral 277.5 234.3 232 [YWLZ11]
80 11/16 Parallel-Cut MITM 274 2 274 [NWW13b]
80 13/16 Differential 276 252 216 [LNP14]
80 Full Biclique 279 248 260 [AFL+12]
96 13/20 Parallel-Cut MITM 294 2 282 [NWW13b]
96 14/20 Differential 289.2 258.4 216 [LNP14]
96 Full Biclique 295.18 232 260 [AFL+12]

Figure 3.48: A Round of Piccolo
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3.37.2 Piccolo1

Piccolo (whichmeans “small” in Italian), was introduced by SONY in 2011 [SIH+11]. Its design2

is similar to a Type 2 4-branch Feistel networkwith an extremely compact 4-bit S-box and simple3

key schedule.4

Key lengths of 80 and 128 bits are supported, with respectively 25 and 31 rounds. A round5

is represented in Figure 3.48. The four branches are 16 bits wide, but in place of a simple cir-6

cular permutation of the branches there is a more complex byte permutation – hence the four7

branches are each split in two.8

The F-function is simple: first the S-box is applied in parallel to all four nibbles, then these are9

interpreted as a vector of four elements of 𝔽24 and are multiplied by anMDSmatrix, then there10

is another S-box application. This is the SPS F-function type The S-box is very simple, and can11

be implemented with only 12 GE. Key scheduling is just bit extraction from the secret key.12

Adding decryption support to a Piccolo encryption implementation requires little additional13
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area or code.1

We are not aware of attacks that break the full cipher. The best cryptanalytic results we are2

aware of are:3

• The biclique cryptanalysis in [WWY12] breaks full round Piccolo-80 without post whitening4

keys, resp. 28-round Piccolo-128without pre whitening keys, with time complexity of 278.95,5

resp. 2126.79 encryptions.6

• In [JKL+12] attacks are described on the full cipher Piccolo-80/128 with computational com-7

plexities of 279.13 and 2127.35, respectively.8

U.S. Patent Application 2014/0003603 covers, among other things, various types of Feistel Net-9

works and Lai-Massey networks where the F-function is of type SPS. As described in Subsec-10

tion 1.8.4 on page 54, this is a line of research pursued by Andrey Bogdanov and Kyoji Shibu-11

tani [BS13b]. In particular, F-functions of SPS type are covered which alternate two different12

S-Boxes in each S layer. The idea of alternating two different types of S-boxes in the S layer of a13

SP F-function is already found in CLEFIA (Section 3.28 on page 203), also a SONY cipher.14

3.37.3 MIBS15

The MIBS cipher was introduced at CANS 2009 [ISSK09] by Maryam Izadi, Babak Sadeghiyan,16

Seyed Saeed Sadeghian, and Hossein Arabnezhad Khanooki. It was designed for resource-17

constrained devices, such as low-cost RFID tags, with a small gate count in hardware imple-18

mentations.19

It is a 64-bit block cipher using keys of 64 or 80 bits. The structure is a simple balanced 2-branch20

Feistel Network design, with 32 rounds for both key sizes.21

All internal operations in MIBS are nibble-wise, that is, on 4-bit words. The round function22

of MIBS has an SPN structure consisting of an XOR layer with a round subkey, a substitution23

layer consisting of eight instances of the same 4-bit S-box, and a linear transformation layer24

(with branch number five), in this order.25

The key schedule is a variant of the key schedule of PRESENT (Section 3.29 on page 206).26

Asli Bay, Jorge Nakahara and Serge Vaudenaymount several types of attacks on reduced round27

MIBS [HWG10]. They break up to 18 rounds faster than exhaustive search.28

3.37.4 LED29

The LED cipher is a 64-bit cipher with key sizes of 64 to 128 bits. The first versionwas presented30

at CHES 2011 [GPPR11], and a revision was disclosed later [GPPR12]. The cipher is an ongoing31

project with its ownweb page. LED is an acronym that stands for Light Encrypting Device, but32

it is also a pun on the fact that LEDs produce light using little energy.33

The cipher aims to be as small as PRESENT (Section 3.29 on page 206), and roughly similarly34

performing (in fact, it is faster in SW, slower in HW), while avoiding some of the attacks that35

have affected other ultra lightweight ciphers in the recent past. It is also designed to be realised36

with a very compact serial hardware architecture.37

It is an interesting twist on the “mini AES” idea because key mixing is not performed at each38
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round. Round keys are added every four rounds, reducing latency. Each round is composed of1

(i) XOR of fixed constants, (ii) parallel application of the PRESENT S-box to all 16 nibbles in the2

state, (iii) ShiftRows and (iv) MixColumns using an MDS matrix. The constants are added3

to only a fixed half of the state. A group of four rounds is called a step. The number of rounds4

varies from 32 to 48 for 64 to 128-bit keys.5

Key schedule is almost nonexistent: With a 64-bit key, there is only one sub key which is the6

secret key itself. With 128-bit keys, the secret key is split into two 64-bit parts which are used as7

subkeys in alternating fashion. Slide attacks (Section 2.6.2 on page 110) do not apply because8

different round constants are used in each step.9

The paper [GPPR12] contains also extensive HW area/performance comparisons.10

3.38 Ciphers that are Efficient when Masked11

A recent development direction is the search for ciphers that are more efficient than existing12

designs when implemented to be higher order side-channel analysis resistant – even if, as a13

result, unprotected implementations are somewhat inefficient.14

3.38.1 PICARO15

The block cipher PICARO was introduced by Gilles Piret, Claude Carlet and Thomas Roche at16

ACNS 2012 [PRC12]. It is a balanced 2-branch Feistel network, with a block size of 128 bits and17

a key size of 128 bits.18

The starting point for the design of PICARO are 8-bit S-boxes which are meant to be evalu-19

ated as efficiently as possible in a higher order side-channel analysis resistant implementation20

– this is contrast to the usual approach of taking an existing design and hardening its imple-21

mentation. The method for hardening the implementation is a Boolean masking scheme for22

software implementations described by Matthieu Rivain and Emmanuel Prouff [RP10], based23

on Yuval Ishai, Amit Sahai and David Wagner’s hardware-oriented masking scheme [ISW03],24

and further developed in [CGP+12, PR13].25

A 𝑑th order masking scheme as presented in [RP10] is an algorithmic countermeasure that26

thwarts 𝑑th DSCA (differential side channel analysis); the data processed by the cipher is ran-27

domised in such a way that there exists no set of 𝑑 processed side channel trails that together28

depend on the secret. In order to achieve this, each elementary boolean or arithmetic variable29

𝑥 in a domain 𝐷 is replaced by a vector consisting of 𝑑 + 1 shares 𝑥0, 𝑥1, … , 𝑥𝑑 that satisfy a30

relation 𝑥0 ∗𝑥1 ∗⋯∗𝑥𝑑 = 𝑥, where ∗ is a group operation in𝐷 or a superset thereof – this is thus31

related to the concept of secret sharing as understood in MPC (multi party computation). The32

actual values of the shares are randomised, and each operation on one or more variables is then33

replaced by parallel or serial related operations on the vectors of shares: for instance,if ∗ is the34

XOR, operations such as shifts and rotations are replaced by 𝑑 + 1 shifts and rotations. There35

are several masking schemes, and the paper [PRC12] contains a little survey thereof. Mask-36

ing schemes make implementations considerably more expensive, and therefore the search for37

building blocks for ciphers that lend themselves to a “lighter” masked realisation is a very in-38

teresting research problem.39

Because of this research goal, the choice fell on a S-box with relatively poor (i.e. high) non-40

linearity. Also, the S-box is non-injective, causing some input differences to produce vanishing41
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Table 3.16: Performance Comparisons of AES and PICARO

Number of Kcycles for encryption

Version AES PICARO

Unprotected 2 26
Masked order 1 129 94
Masked order 2 271 160
Masked order 3 470 253

output differences. These features would make the cipher weak (or require too many rounds)1

if used in a F-function constructed as a simple SPN (i.e. key mixing, an array of 8 S-boxes, a2

diffusion layer).3

These suboptimal cryptanalytic properties are countered by adopting an approach that recalls4

the DES: the input to the F-function is first expanded from 64 to 112 bits, then it is XORed to a5

112-bit round key, and finally fed to an array of 14 S-boxes before being compressed to 64 bits.6

The key schedule has been designed to be easy to implement; the round keys can be derived7

on-the-fly in both encryption and decryption mode. The round keys are obtained from the8

master key and a key derived from it by simple XORs of its parts by simple cyclic rotation and9

bit extraction.10

If the master key is zero, all round keys are equal to zero as well. In fact there are four weak11

keys (one is all zeros, the second is all ones, the other two consist of alternating zeros and ones).12

In Table 3.16, taken from [PRC12], the performance of PICARO is compared to that of the AES13

in variously masked implementations on a 8-bit micro controller. PICARO is much slower than14

the AES in an unprotected implementation. However, implementations masked of order one,15

two, or three are considerably faster than the corresponding implementations of the AES.16

3.38.2 ZORRO17

ZORRO is a block cipher presented at CHES 2013 [GGNPS13] by Benoît Gérard, VincentGrosso,18

MaríaNaya-Plasencia and François-Xavier Standaert. The design of ZORROhas the same goals19

as PICARO – i.e. producing a cipher that can be realised efficiently in a higher-order boolean20

masked implementation – but with the aim of recycling existing designs lessons as much as21

possible such as the AES rounds (which have been well studied for hardening against physical22

attacks), keeping bijective S-boxes to obtain better SCA-resistance, and reducing the total num-23

ber of S-boxes by taking advantage of strong diffusion. Because of this, ZORRO aims to be the24

“masked hero,” as its literary counterpart.25

The cipher has a block size and key size of 128 bits. It is a SPN with 24 rounds, grouped into26

six steps of four rounds each, and key mixing is applied only at before the first and after each27

step – with the same key used unchanged every time. The state is represented as the AES-12828

state as a 4-by-4 state matrix of 8-bit entries.29

After comparing several different designs for composite S-boxes which are easy to mask, the30

choice fell on a 4-round Feistel network with a linear mixing layer using a 4-bit S-box as the31

F-function.32
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Table 3.17: Performance Comparisons of AES, Noekeon, PICARO, Zorro, Robin, and Fantomas
in Masked Implementations: Encryption time for a 128-bit block on an Atmel AtMega644p.

Number of cycles for encryption

Version AES Noekeon PICARO Zorro Robin Fantomas

Unprotected 5,100 8,606 37,515 6,578 8,877 6,673
Masked order 1 209,165 65,736 177,573 97,867 60,988 49,060
Masked order 2 395,546 120,965 316,047 196,999 124,026 97,458
Masked order 3 616,136 177,943 503,707 321,057 187,420 143,440

Each round is a composition of four transforms: a modified SubBytes transform where, to1

minimise the number of S-boxes, the S-boxes are applied only to the first row of the statematrix;2

an AddConstants transform, in which the vector [𝑖, 𝑖, 𝑖, 𝑖 ≪ 3] is added to the first state rows3

where 𝑖 is the round index; then ShiftRows and MixColumns follow.4

On AtmelAtMega644p the cipher is significantly faster than PICARO for both unprotected and5

masked implementations.6

An important observation stems from the fact that the S-boxes are applied only to the first rowof7

the state matrix and not to the whole matrix. This allows part of the cipher to be represented as8

a kind ofMatsui-like Feistel Networkwith linear mixing layers in place of branch permutations.9

ZORRO is not patented [Sta14].10

3.38.3 Robin and Fantomas11

At FSE 2014, Vincent Grosso, Gaëtan Leurent, Fran cois-Xavier Standaert, and KeremVarici pre-12

sented design approaches for ciphers allowing for lightweight masked implementations that13

are based in a fundamental way on bit-slicing [GLFV14].14

In particular they use small S-boxes that, while offering less than optimal linear and differential15

properties, can be implemented using very small circuits, hence with a short program consist-16

ing of logic operations. Such S-boxes will then require a higher number of rounds than optimal17

ones to achieve a comparable level of security: the secret to an efficient design is then to strike18

the right balance. Diffusion layers are table based.19

As an example of the application of their design ideas, in [GLFV14] two ciphers are presented,20

called Robin and Fantomas.21

Robin is involutional. It uses an 8-bit S-box obtained from a 4-bit one via a 3-round Feistel22

network (a similar approach was used in MISTY). The linear layer is involutional. It has 1623

rounds.24

Fantomas is not involutional. Its 8-bit S-box obtained is constructed as an unbalanced Feistel25

networks built from 3- and 5-bit S-boxes similarly to MISTY, to improve differential properties26

– as a result, Fantomas uses only 12 rounds instead of 16 and its designers claim that to achieve27

a comparable level of security.28

Therefore, Fantomas is faster, but requires separate code paths for encryption and decryption.29

Robin is slightly slower, but encryption and decryption are unified, only the key schedule hav-30

ing to be run in the inverse order.31
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Performance numbers comparing Robin and Fantomas to AES, Noekeon and the other masked-1

lightweight designs described in this section are given in Table 3.17 on the facing page (the2

paper contains a chart, but we obtained the exact numbers from the authors).3

Robin and Fantomas are not patented [Sta14].4
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Comparisons2

Whereas most public key primitives are based on long integer arithmetic (ECC, RSA, ElGamal,3

Diffie Hellman), binary field arithmetic (ECC, Diffie Hellman) or matrix arithmetic (McEliece,4

Niederreiter), which are roughly all implemented at the same level of efficiency in SW andHW,5

the situation is rather different for block ciphers and symmetric cryptography in general. One6

of the main reasons is the presence of operations such as bit permutation layers. On one hand7

a complex bit permutation layer is almost free in HW, whereas is can be extremely expensive8

in SW – on the other hand a bit sliced implementation in SW can be very competitive, but only9

when the mode of operation allows several instances of the cipher to run in parallel.10

This means that primitives that heavily rely on these operations are expensive in SW and can11

be inexpensive in HW. Since general purpose CPUs are commonplace, one may want to design12

primitives that are very efficient on such platforms. This explains the success of AES and other13

ciphers which are essentially byte oriented.14

Comparison of HW performance on FPGAs is very important in the literature, presumably15

for applications such as high bandwidth links or memory encryption (where inexpensive and16

fast HW is required), or Internet of Everything applications (where small gate counts lead to17

financial savings). In several contexts, inexpensive sensor nodes (Internet of Everything) with18

8- or 16-bit CPUs are the second most important type of platform. Only after this come general19

purpose CPUs. In reporting comparisons we follow the same order, and the different weights20

of the sections reflect the weight in the literature.21

4.1 Hardware Performance22

We report here some performance results of keyed lightweight block ciphers in hardware. Ta-23

ble 4.1 on page 237 is obtained by merging several sources. As it is now common in the litera-24

ture, throughput has been normalized at 100kHz in order to get a common baseline, In many25

cases it is not properly indicated whether the gate counts for the implementations contain only26

the encryption operation or also the decryption – this is a common problem. In fact, even the27

very thorough authors of [BSS+13] state: It is important to note the difficulties inherent in the sort28

of comparison we are doing. Different authors implement their algorithms under differing assumptions:29

various cell libraries are used for hardware implementations, and a variety of assumptions are made for30

software implementations. In addition, it is not always clear what a particular author means, for exam-31

ple, by code size (is the decryption algorithm implemented or not?) or gate count (is the key schedule32

included?). All of this can make attempts at a fair comparison problematic.33

Only a few papers report power consumption, and even when they do, the power figures are34

often difficult to analyse and properly compare, a problem acknowledged by the Ecrypt II re-35

port on lightweight cryptographic primitives [BBG+10]. It is a well-known fact that at low fre-36
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quencies, as typical for low-cost applications, the power consumption is dominated by its static1

part, which is proportional to the amount of transistors involved. As frequencies increase the2

relationship becomes more complicated. Furthermore, the power consumption strongly de-3

pends on the used technology and, if estimated, it greatly varies with the simulation method.4

To address these issues and to reflect the time-area-power trade-off inherent in any hardware5

implementation a new figure of merit (FOM) was proposed in [BDN+10], to measure the ef-6

ficiency of a cipher. The FOM is computed as bits per block× 109

cycles per block×GE2 , where GE is gate equivalents.7

We note that it is a figure that favors low gate designs. Hence, in Table 4.1 we omit the power8

values but, besides cycles per block, throughput at 100 KHz (in kb/sec), the area requirements9

(in GE), we report the FOM. The size of the manufacturing process of the FPGA used for the10

implementation is also given.11

Some implementations are marked with an asterisk (*), other with a dagger (†):12

• Results marked with an asterisk (*) usually are single clock (from 0.5 to 2.1 cycles per block)13

for fully pipelined, highly parallel implementations of the cipher to be used in non feedback14

modes of operation. The latency in these cases is equal (or very close) to the number of15

rounds and if the cipher is used in modes of operation with feedback the throughput has16

to be divided accordingly. These results are reported only to show how the hardware re-17

quirements increase in case one desires maximal throughput, i.e. of the order of magnitude18

of one block per clock cycle – the papers report the corresponding latency only in very rare19

cases, but it can be assumed (as a rule of thumb) that it is roughly corresponding to the clock20

count for the other, non-parallel implementations. (These caveats does not apply to all other21

implementations.)22

• Results marked with a dagger (†) are also fully unrolled, but to maximize performance and23

reduce latency to 1 cycle – rounds could be intermixed and these implementations are in24

general not pipelined.25

Under the column labeled Enc./Dec. we report whether only encryption is implemented or26

decryption as well. A lone question mark (“?”) means we could not ascertain the information,27

whereas “E?” means we lean towards only encryption was implemented. For ARMADILLO28

we enter N/A as it is a multipurpose cryptographic primitive out of which one can build other29

primitives such as encryption, hashing and so on (at essentially no additional cost).30

Ciphers are grouped by block size, and within each group they are ordered alphabetically.31

Despite the high throughput per clock cycle, these two types of implementations usually have32

a very long critical path, which limits the top frequency. It is still not unusual that these imple-33

mentations achieve throughputs of several Gb/s. This is the case, for instance, of the results34

reported in [EYCP00, SRQL02, KSGK04, BCG+12b], peaking with 17.4Gb/s and 33.25Gb/s im-35

plementations of Camellia [DID04, DID05].36

In many cases implementations come in obvious pairs, for instance there are two for PRESENT-37

80 and Piccolo-80: these represent two different approaches to cipher implementation, where38

the slower implementation is cyclic and round-based, and the faster implementation is serial-39

ized. In general implementations whose latency is similar to the number of rounds (or a very40

small multiple thereof) are serialized – and there may be several approaches in between. For41

the details we refer to the papers.42
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Finally, GOST-FB andGOST-PS denoteGOSTwith eight different S-Boxes as used by theCentral1

Bank of Russian Federation, and GOST with only the PRESENT S-Box, respectively.2

We note that precise clock information is not available for an abundance of block cipher FPGA3

implementations in the literature (for instance in [GC01]), so we had no baseline to scale the4

results and did not include them.5

Table 4.1: Performance of Block Ciphers in HW

Block Key Cycles Speed Tech FOM
size size Enc./ per (kbps@ Process Area 𝑏𝑖𝑡𝑠 × 109

𝑐𝑦𝑐/𝑏𝑙𝑘 × 𝐺𝐸2Algorithm (bits) (bits) Dec. block 100kHz) (µm) (#GE) Ref.

KATAN32 32 80 E 255 12.5 0.13 802 194 [CDK09]
SIMON 32 64 E+D 271 11.8 0.13 535 413 [BSS+13]
SIMON 32 64 E+D 21.5 97 0.13 722 2,855 [BSS+13]
SPECK 32 64 E+D 385 8.3 0.13 642 159 [BSS+13]
SPECK 32 64 E+D 23 139.1 0.13 850 1,926 [BSS+13]

KATAN48 48 80 E 255 18.8 0.13 927 219 [CDK09]
SIMON 48 96 E+D 304 15.8 0.13 763 271 [BSS+13]
SIMON 48 96 E+D 37 129.7 0.13 1,062 1,150 [BSS+13]
SPECK 48 96 E+D 400 12 0.13 884 154 [BSS+13]
SPECK 48 96 E+D 24 200 0.13 1,254 1,272 [BSS+13]

CAST-128 64 128 E+D 16 400 0.04 2,600 592 [KSGK04]
CAST-128* 64 128 E+D 1 6400 0.04 24,200 110 [KSGK04]
DES 64 56 E 144 44.4 0.18 2,300 84 [LPPS07]
DES 64 56 E+D 28 228.57 3 3,000 254 [VHVM88]
DESL 64 56 E 144 44.4 0.18 1,848 130 [LPPS07]
DESXL 64 184 E 144 44.4 0.18 2,168 95 [LPPS07]
GOST-FB 64 256 E 264 24.24 0.18 800 379 [PLW10]
GOST-FB 64 256 E 32 200 0.18 1,000 2,000 [PLW10]
GOST-PS 64 256 E 264 24.24 0.18 651 572 [PLW10]
GOST-PS 64 256 E 32 200 0.18 1,017 1,934 [PLW10]
HIGHT 64 128 E 34 188 0.25 3,048 203 [HSH+06]
HIGHT 64 128 E+D 34 188 0.35 2,608 259 [LLYC09]
IDEA 64 128 E+D 9 711 0.04 1,852 2,073 [KSGK04]
IDEA* 64 128 E+D 1 6400 0.04 11,700 468 [KSGK04]
KASUMI 64 128 ? ? 6,000 [ECR]
KATAN64 64 80 E 255 25.1 0.13 1,054 226 [CDK09]
KATAN64 64 80 E 85 75.3 0.13 1,269 468 [CDK09]
KHAZAD 64 128 E+D 9 711 0.04 2,250 1,405 [KSGK04]
KHAZAD* 64 128 E 1 6400 0.04 7,872 1,033 [SRQL02]
KLEIN-64 64 64 E+D 207 30.9 0.18 1,220 208 [GNL11]
KLEIN-80 64 80 E+D 271 23.6 0.18 1,478 108 [GNL11]
KLEIN-80 64 80 E+D 17 376 0.18 2,629 108 [SMMK12]
KLEIN-96 64 96 E+D 335 19.1 0.18 1,528 82 [GNL11]
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Performance of Block Ciphers in HW (continued)

Algorithm Block Key E+D Cycles T’put Process Gates FOM Ref.

LED-64 64 64 E? 1,248 5.1 0.18 966 55 [GPPR12]
LED-64 64 64 E? 32 200 0.18 2,695 275 web page
LED-80 64 80 E? 1,872 3.4 0.18 1,040 32 [GPPR12]
LED-80 64 80 E? 48 133.3 0.18 2,780 173 web page
LED-96 64 96 E? 1,872 3.4 0.18 1,116 27 [GPPR12]
LED-96 64 96 E? 48 133.3 0.18 2,866 162 web page
LED-128 64 128 E? 1,872 3.4 0.18 1,265 21 [GPPR12]
LED-128 64 128 E? 48 133.3 0.18 3,036 145 web page
LED-128 64 128 E+D 49 130.6 0.045 3,309 119 [BCG+12b]
LED-128† 64 128 E+D 1 6400 0.045 109,811 5 [BCG+12b]
mCrypton 64 64 E 13 492.3 0.13 2,420 841 [LK05]
mCrypton 64 64 E+D 13 492.3 0.13 3,473 408 [LK05]
mCrypton 64 96 E 13 492.3 0.13 2,681 685 [LK05]
mCrypton 64 96 E+D 13 492.3 0.13 3,789 343 [LK05]
mCrypton 64 128 E 13 492.3 0.13 2,949 566 [LK05]
mCrypton 64 128 E+D 13 492.3 0.13 4,108 292 [LK05]
MISTY-1 64 128 E+D 9 711 0.04 4,820 306 [KSGK04]
MISTY-1* 64 128 E 1 6400 0.04 8,386 910 [EYCP00]
MISTY-1* 64 128 E+D 0.5 12800 0.04 13,080 748 [KSGK04]
Piccolo-80 64 80 E+D 432 14.8 0.18 1,034 139 [SIH+11]
Piccolo-80 64 80 E+D 27 237 0.18 1,496 1,059 [SIH+11]
Piccolo-128 64 128 E+D 528 12.1 0.18 1,334 68 [SIH+11]
Piccolo-128 64 128 E+D 33 194 0.18 1,773 617 [SIH+11]
PRESENT-80 64 80 E 547 11.7 0.18 1,075 101 [RPLP08]
PRESENT-80 64 80 E 32 200 0.18 1,570 811 [BKL+07]
PRESENT-80† 64 80 E+D 1 6400 0.045 63,942 16 [BCG+12b]
PRESENT-128 64 128 E 559 11.4 0.18 1,391 59 [Pos09]
PRESENT-128 64 128 E 32 200 0.18 1,886 562 [BKL+07]
PRESENT-128 64 128 E+D 32 200 0.045 3,707 146 [BCG+12b]
PRESENT-128† 64 128 E+D 1 6400 0.045 68,908 13 [BCG+12b]
PRINCE 64 128 E+D 12 533.3 0.045 3,779 373 [BCG+12b]
PRINCE* 64 128 E+D 1 6400 0.045 8,260 938 [BCG+12b]
SIMON 64 96 E+D 720 8.9 0.13 815 134 [BSS+13]
SIMON 64 96 E+D 45 142.2 0.13 1,216 962 [BSS+13]
SIMON 64 128 E+D 768 8.3 0.13 968 89 [BSS+13]
SIMON 64 128 E+D 48 133.3 0.13 1,417 664 [BSS+13]
SPECK 64 96 E+D 876 7.3 0.13 918 87 [BSS+13]
SPECK 64 96 E+D 29 220.7 0.13 1,522 953 [BSS+13]
SPECK 64 128 E+D 930 6.9 0.13 1,058 61 [BSS+13]
SPECK 64 128 E+D 31 206.5 0.13 1,658 751 [BSS+13]
Triple DES 64 184 E+D 48 133.7 0.04 431 7,178 [KSGK04]
Triple DES* 64 184 E+D 1 6400 0.04 14.240 316 [KSGK04]
TWINE 64 80 E 393 16.2 0.18 1,011 159 [SMMK12]
TWINE 64 80 E 36 178 0.18 1,503 787 [SMMK12]
XTEA 64 128 ? 112 57.1 0.13 3,490 47 [ECR]

SEA 96 96 E+D 50(?) 192(?) 0.13 449 [MSQ07]
SEA 96 96 E+D 93 103 0.13 3,758 73 [MSQ07]
SIMON 96 96 E+D 2,743 3.7 0.13 955 38 [BSS+13]
SIMON 96 96 E+D 216 44.4 0.13 1,088 375 [BSS+13]
SIMON 96 96 E+D 54 177.8 0.13 1,580 712 [BSS+13]
SPECK 96 96 E+D 2,824 3.4 0.13 1,012 33 [BSS+13]
SPECK 96 96 E+D 232 41.4 0.13 1,134 322 [BSS+13]
SPECK 96 96 E+D 30 320 0.13 2,058 756 [BSS+13]
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Performance of Block Ciphers in HW (continued)

Algorithm Block Key E+D Cycles T’put Process Gates FOM Ref.

AES 128 128 ? 160 80 0.13 3,100 83 [ECR]
AES 128 128 E 226 56.6 0.13 2,400 98 [MPL+11]
AES* 128 128 E 2.1 6095 0.09 10,992 504 [EYCP00]
AES 128 128 E+D 10 1280 0.18 18,300 39 [SHAS07]
AES 128 128 E+D 5.5 1164 0.045 15,880 92 [BCG+12b]
AES† 128 128 E+D 1 12800 0.045 135,051 7 [BCG+12b]
ARMADILLO2-A 128 80 N/A 176 72 0.18 2,923 85 [BDN+10]
ARMADILLO2-A 128 80 N/A 44 291 0.18 4,030 179 [BDN+10]
Camellia 128 128 E+D 20 640 0.35 11,350 50 [AIK+00]
Camellia* 128 128 E+D 1 12800 0.12 5,368 4,442 [DID04]
Camellia* 128 128 E+D 0.5 25600 0.12 11,287 2,009 [DID05]
CLEFIA 128 128 E+D 18 711.1 0.09 5,979 199 [SSA+07]
CLEFIA 128 128 E+D 36 355.6 0.09 4,950 145 [SSA+07]
RC-6 128 128 E? 20 640 0.12 2,902 760 [Beu03]
RC-6* 128 128 E? 1 12800 0.12 8,554 1,749 [Beu03]
SEED 128 128 E+D 16 800 0.18 23,500 15 [SHAS07]
Serpent* 128 128 E 1 12800 0.09 9,004 1,579 [EYCP00]
SIMON 128 128 E+D 4,410 2.9 0.13 1,234 19 [BSS+13]
SIMON 128 128 E+D 560 22.9 0.13 1,317 132 [BSS+13]
SIMON 128 128 E+D 70 182.9 0.13 2,378 323 [BSS+13]
SPECK 128 128 E+D 4,250 3 0.13 1,280 18 [BSS+13]
SPECK 128 128 E+D 1,054 12.1 0.13 1,396 62 [BSS+13]
SPECK 128 128 E+D 34 376.5 0.13 3,012 415 [BSS+13]

ARMADILLO2-B 192 128 N/A 64 300 0.18 6,025 82 [BDN+10]
ARMADILLO2-B 192 128 N/A 256 75 0.18 4,353 40 [BDN+10]

It is not immediate to draw conclusions from such a wealth of data points. However, some1

general considerations can be done:2

• AES actually achieves quite decent performance at relatively modest gate counts.3

• SIMON and SPECK are among the most compact ciphers, however it seems to be difficult4

to produce single clock latency versions due to the number of rounds.5

• PRINCE provides good performance at low gate counts. Reduced round versions seem to6

retain good security, making it suitable for applications such as memory encryption.7

• Besides PRINCE, five ciphers, namely KHAZAD, MISTY, Camellia, Serpent and IDEA can8

be implemented in single cycle with a surprisingly low gate count: these designs must be9

studied further in order to understand what exactly in the design allows this property. In10

particular, the security achieved despite simple (in some cases very small) S-Boxes and low11

round counts are choices to be analyzed carefully. Similar considerations apply to RC-6, but12

the use of variable shifts can be a problem in some contexts.13

• LED, Piccolo and PRESENT are very interesting for sensor applications, as they can be very14

compact both in HW and SW – however in order to get low latency the gate count (and15

critical path length) explodes. So they do not seem interesting for memory encryption.16
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Table 4.2: Performance of Block Ciphers in SW on a 8-bit ATMEL ATtiny45 [EGG+12]

Block Code RAM Enc. Dec. energy
Algorithm Size Size Use cycles cycles 𝜈J
DESXL 64 820 48 84,600 84,600 348.8
AES 128 1,659 33 4,600 7,010 19.2
HIGHT 64 402 32 19,500 20,100 79.8
IDEA 64 836 232 8,300 22,700 34.3
KASUMI 64 1,264 24 11,900 11,900 47.6
NOEKEON 128 364 32 23,500 23,500 95.9
TEA 64 648 24 7,400 7,540 30.3
mCrypton-64 64 1,076 28 16,500 22,700 68.0
SEA 96 426 24 41,600 40,900 173.7
KATAN64 64 338 18 72,000 88,500 289.2
KLEIN-80 64 1,268 18 6,100 7,700 25.1
PRESENT-80 64 1,000 18 11,300 13,600 45.3

4.2 Software Performance: 8 and 16 bit Microcontrollers1

Comparing performance in software is even more difficult, since there are so many possible2

variations in software environments. Furthermore, the advances in CPU performance and the3

evolution of the various ISAs makes alignment of different benchmark results in software ar-4

guably even more difficult than in hardware.5

However, there are some recent comparisons onmicrocontrollers which are relatively extensive6

and therefore can provide some possible baselines, such as [EKP+07, EGG+12, CMM13].7

In [EGG+12] twelve block ciphers are implemented on an ATMEL ATtiny45 device, and the8

results are compared with those from [EKP+07]. The ATMEL ATtiny45 is a low power 8-bit9

AVR RISC-basedmicrocontroller with 32 general purpose registers, and integrates 4KB of flash10

memory, a 256-Byte EEPROM, and 256 bytes of SRAM. We report the benchmarks on the AT-11

MEL ATtiny45 in Table 4.2.12

The authors of SIMON and SPECK have compared the software performance of their algo-13

rithms to other popular lightweight block ciphers in [BSS+13]. The 8-bit microcontroller of14

choice was the ATMELATmega128 running at 16MHz, an architecture similar to the chip used15

by [EGG+12]. For both SIMONand SPECK, and for each block size/key size combination, three16

implementations are provided: one that minimizes RAM usage (apart from the state, which17

is not counted because processing is assumed to be done in place), one that minimizes code18

size (FLASH), and one that maximizes throughput thus consuming less energy, but accepting19

higher RAM and FLASH usage. A summary of their performance measurement, including20

results from [OBSC10], is given in Table 4.3.21

One further notable recent comparison is [CMM13], where about twenty recent lightweight22

block ciphers have been implemented on the MSP430, a 16-bit microcontroller from TI which23

is used in wireless sensor nodes. This is a completely different architecture than the Atmel24

chips in the other comparisons. We report their results in Table 4.4 on page 242.25

NOEKEON is tested in both direct-key and indirect-key mode. The cipher MIBS is described26

in [ISSK09]. The authors of [CMM13]made three implementations of LED. Thefirst one (LEDxx)27
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Table 4.3: Performance of Block Ciphers on a 8-bit ATMEL ATmega128 [BSS+13, OBSC10]

Block Key Code RAM Enc.
Algorithm Size Size Size Use cycles/byte

TWINE 64 80 1,304 414 271
PRESENT-80 64 80 487 0 1,333
KATAN64 64 80 272 18 9,143
KLEIN-80 64 80 766 18 762
SIMON (low RAM) 64 96 274 0 239
SIMON (low FLASH) 64 96 198 168 218
SIMON (low energy) 64 96 530 168 205
SPECK (low RAM) 64 96 182 0 144
SPECK (low FLASH) 64 96 152 108 154
SPECK (low energy) 64 96 556 104 114
KLEIN-96 64 96 766 18 955
SIMON (low RAM) 64 128 282 0 250
SIMON (low FLASH) 64 128 208 176 228
SIMON (low energy) 64 128 404 176 217
SPECK (low RAM) 64 128 186 0 150
SPECK (low FLASH) 64 128 160 112 160
SPECK (low energy) 64 128 596 108 118
PRESENT-128 64 128 487 0 1,333
SIMON (low RAM) 128 128 732 0 376
SIMON (low FLASH) 128 128 328 544 342
SIMON (low energy) 128 128 446 544 333
SPECK (low RAM) 128 128 396 0 167
SPECK (low FLASH) 128 128 214 264 165
SPECK (low energy) 128 128 388 256 139
AES 128 128 943 33 288
AES 128 128 1,912 432 125
AES 128 128 1,912 176 135

is a standard implementation that does not use tables. The others use 8 lookup tables for the1

S-Box, ShiftRows and MixColumns steps. In the implementations marked as “tdur”, these ta-2

bles are pre-computed and the cost of building them is not included. In the implementations3

marked as “tcalc”, these tables are computed before encryption and decryption and these costs4

are included in the benchmark.5

The performance results always include key schedule, so they do not give asymptotic through-6

put in modes where the key is constant. These results include the memory consumption, both7

for internal state (RAM) and code size (which includes static tables).8

From the comparisons given in Tables 4.2, 4.4 and 4.3 we see that some ciphers can be im-9

plemented in a particularly compact way: TEA, XTEA, SIMON and SPECK are among the10

smallest, followed by NOEKEON, LED mCrypton, Piccolo, SEA and TWINE. KATAN is very11

small in [EGG+12] whereas KATAN has a big memory footprint in [CMM13] – a fact which the12

authors attribute to the flexibility of block sizes supported by their implementation.13

TEA, XTEA and the AES are generally fast, as are SIMON and SPECK – the latter usually ob-14

taining comparable speed with a much smaller memory footprint. KLEIN gives decent perfor-15

241



CHAPTER 4. COMPARISONS

Table 4.4: Performance of Block Ciphers on a 16-bit TI MSP 430 [CMM13]

Block code RAM Encryption Decryption
size size usage (incl. Key Schedule)

Algorithm (bits) (bytes) (bytes) (cycles/byte) (cycles/byte)

AES 128 4,460 19 1,891 2,406
CLEFIA-128 128 4,780 180 6,134 6,365
CLEFIA-192 128 5,010 268 9,394 7,708
CLEFIA-256 128 4,924 268 9,728 9,080
DESXL 64 16,816 112 3,256 8,364
HIGHT 64 3,130 18 4,046 4,077
IDEA 64 3,140 82 3,925 20,422
KATAN32 32 5,816 1881 186,069 179,264
KATAN48 48 7,076 1969 187,878 175,613
KATAN64 64 8,348 1953 189,798 174,740
KLEIN-64 64 5,486 36 3,689 12,575
KLEIN-80 64 5,676 38 5,034 16,921
KLEIN-96 64 5,862 39 6,437 21,348
LBlock 64 3,568 13 5,369 2,750
LED-128 64 2,648 41 167,686 168,144
LED-128_tcalc 64 2,948 41 33,590 34,369
LED-128_tdur 64 2,264 41 21,382 21,729
LED-64 64 2,670 41 111,835 112,169
LED-64_tcalc 64 2,498 41 26,551 27,175
LED-64_tdur 64 2,264 41 14,359 14,535
mCrypton-64 64 2,726 18 13,475 27,483
mCrypton-96 64 2,834 20 13,562 27,540
mCrypton-128 64 3,108 24 13,551 27,571
MIBS64 64 3,184 29 6,132 6,611
MIBS80 64 3,138 16 7,336 4,980
NOEKEON (dir) 128 2,710 34 1,643 1,695
NOEKEON (ind) 128 2,784 34 3,285 3,339
PRESENT (size) 64 4,964 142 61,450 61,226
PRESENT (speed) 64 4,814 142 45,573 46,091
Piccolo-128 64 2,510 91 4,562 4,950
Piccolo-80 64 2,434 79 4,013 4,328
SEA 96 2,804 24 9,954 10,013
SKIPJACK 64 6,628 19 10,615 15,421
TEA 64 1,354 13 1,098 1,141
TWINE 128 2,216 23 5,125 3,808
XTEA 64 1,394 11 1,160 1,203

mance as well. IDEA has good encryption performance but decryption is very slow because of1

the inefficiencies of decryption key scheduling in very constrained environments – this limits2

its applications. KATAN, LED and mCrypton tend to be slow.3
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Table 4.5: Six device/server use cases for lightweight encryption from [BGLP13]. For the prac-
tical measurements given in Table 4.6 on the next page, the notation “big/small” refers to
more/less than 10 on average – concretely, the values 1000 and 1 were used.

D B op. mode Example

1 small small – authentication / access control / secure traceability (industrial
assembly line)

2 small big parallel secure streaming communication (medical device sending con-
tinuously sensitive data to a server, tracking data, etc.)

3 small big serial secure serial communication
4 big small – multi-user authentication / secure traceability (parallel indus-

trial assembly lines)
5 big big parallel multi-user secure streaming communication / cloud comput-

ing / smart meters server / sensors network / Internet of
Things

6 big big serial multi-user secure serial communication

4.3 Software Performance: Desktop CPUs1

There is no lack of block cipher comparisons for general purpose CPUs, however they are very2

diverse, often referring to radically different implementations of the same ISAs, and encompass3

extremely different implementation techniques.4

However, recently, a comparison of the performance of LED, PRESENT and Piccolo has been5

published [BGLP13] that tries to assess the performance of these lightweight ciphers on three6

different implementations of the x86-64 instruction set (a Core i3-2367M, a XEON X5650, and a7

Core 2 Duo P8600) using four different implementation techniques for the substitution layer: a8

table-lookupbased implementation, the use of vpermon 16-byte vectors tomake a quick lookup9

for 4-bit S-Boxes, and two different bit sliced implementations. Several different parameter10

choices are taken into consideration to define six use cases:11

• A server communicates with 𝐷 devices, all using distinct keys. For each device, the server12

has to encipher/decipher 𝐵 64-bit blocks of data. The caseswhere the ciphertext comes from13

a parallel mode of operation (like CTR) or a serial one (like CBC) are distinguished.14

• 𝑡𝐸 is the time required by the implementation one encryption without the key schedule and15

without the packing/unpacking of the input/output data – i.e. the conversion to the format16

used by the vperm or bitslice based implementations.17

• 𝑡𝐾𝑆 is the time taken by the key schedule (without the packing of the key data).18

The six use cases are described in Table 4.5 and the performance results in Table 4.6 on the next19

page (abridged from [BGLP13]). There are often two bit sliced implementations, that differ on20

the number of blocks processed simultaneously.21
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Table 4.6: Implementation results for LED, PRESENT and Piccolo on various x86 architectures.

Implementation results for LED, PRESENT and Piccolo on Core i3-2367M @ 1.4GHz
Algorithm Implementation 𝑡𝐸 𝑡𝐾𝑆 use cases speed (cycles/byte)

Type (blocks) (cycles) (cycles) 1 2 3 4 5 6
LED-64 table 608 0 76.0 76.0 76.0 76.0 76.0 76.0

vperm 560 0 71.5 36.0 71.0 36.5 36.0 36.0
bitslice (16) 2,443 0 307.5 20.7 306.8 21.3 20.5 20.7
bitslice (32) 2,604 0 328.0 12.2 327.3 12.9 11.9 12.2

LED-128 table 906 0 113.3 113.3 113.3 113.3 113.3 113.3
vperm 858 0 109.4 54.6 108.3 55.8 54.6 54.6
bitslice (16) 3,671 0 461.6 30.4 460.3 31.6 30.1 30.4
bitslice (32) 3,967 0 499.1 17.6 497.7 19.1 17.3 17.6

Piccolo-80 table 671 38 88.6 83.9 83.9 88.6 83.9 83.9
vperm 512 55 73.1 33.3 65.3 37.7 33.3 33.3
bitslice (16) 977 0 125.5 9.2 123.7 11.1 9.2 9.2

Piccolo-128 table 829 57 110.8 103.6 103.6 110.8 103.6 103.6
vperm 644 55 89.6 41.6 81.9 45.9 41.6 41.6
bitslice (16) 1,196 0 153.9 10.9 151.0 13.8 10.8 10.9

PRESENT-80 table 580 408 123.5 72.6 72.6 123.5 72.6 72.6
vperm 540 350 123.4 35.1 68.8 67.8 35.0 35.0
bitslice (8) 1,333 706 259.0 23.1 168.9 36.0 23.0 23.0
bitslice (16) 2,038 1,100 394.5 17.5 256.2 27.0 17.3 17.4

PRESENT-128 table 580 334 114.3 72.5 72.5 114.3 72.5 72.5
vperm 540 296 118.6 35.0 68.8 66.4 35.0 35.0
bitslice (8) 1,313 738 260.6 22.8 166.5 36.3 22.8 22.8
bitslice (16) 2,221 1,286 440.9 19.0 279.2 30.2 18.7 18.9

Implementation results for LED, PRESENT and Piccolo on XEON X5650 @ 2.67GHz
LED-64 table 567 0 70.9 70.9 70.9 70.9 70.9 70.9

vperm 749 0 96.1 48.1 94.9 49.3 48.1 48.1
bitslice (16) 2,445 0 307.7 20.7 307.0 21.3 20.5 20.7
bitslice (32) 2,846 0 358.2 13.1 357.5 13.9 12.9 13.1

LED-128 table 847 0 105.9 105.9 105.9 105.9 105.9 105.9
vperm 1,058 0 135.8 67.4 133.5 69.7 67.4 67.4
bitslice (16) 3,674 0 461.9 30.3 460.7 31.6 30.1 30.3
bitslice (32) 4,306 0 541.5 19.0 540.0 20.5 18.6 19.0

Piccolo-80 table 568 39 75.9 71.0 71.0 75.9 71.0 71.0
vperm 580 47 81.3 37.4 73.7 42.1 37.4 37.4
bitslice (16) 1,038 0 133.1 9.7 131.3 11.5 9.6 9.7

Piccolo-128 table 700 62 95.3 87.5 87.5 95.3 87.5 87.5
vperm 724 77 103.3 47.4 92.7 53.3 47.4 47.4
bitslice (16) 1,400 0 179.3 12.5 176.5 15.4 12.4 12.5

PRESENT-80 table 525 398 115.4 65.7 65.7 115.4 65.7 65.7
vperm 650 441 150.3 42.1 82.8 82.1 42.1 42.1
bitslice (8) 1,360 600 249.3 23.6 172.4 34.9 23.6 23.6
bitslice (16) 2,453 1,437 488.7 20.9 308.2 33.1 20.6 20.7

PRESENT-128 table 525 304 103.6 65.7 65.7 103.6 65.7 65.7
vperm 650 408 152.8 42.1 82.8 86.6 42.1 42.1
bitslice (8) 1,389 674 262.1 24.0 175.9 36.5 23.9 23.9
bitslice (16) 2,882 1,888 598.8 24.3 361.9 40.2 23.9 24.1

Implementation results for LED, PRESENT and Piccolo on Core 2 Duo P8600 @ 2.4GHz
LED-64 table 502 0 62.8 62.8 62.8 62.8 62.8 62.8

vperm 751 0 94.9 47.4 94.4 47.9 47.4 47.4
bitslice (16) 2,880 0 362.8 24.7 362.0 25.5 24.5 24.7
bitslice (32) 3,029 0 381.5 14.2 380.7 15.0 13.9 14.2
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Implementation results for LED, PRESENT and Piccolo on various x86 architectures (continued)

Algorithm Implementation 𝑡𝐸 𝑡𝐾𝑆 Use cases speed (cycles/byte)
Type (blocks) (cycles) (cycles) 1 2 3 4 5 6

LED-128 table 748 0 93.5 93.5 93.5 93.5 93.5 93.5
vperm 1,091 0 140.0 68.7 136.9 71.8 68.7 68.7
bitslice (16) 4,219 0 531.0 35.2 529.4 36.8 35.0 35.2
bitslice (32) 4,521 0 568.9 20.2 567.3 21.9 19.8 20.2

Piccolo-80 table 537 41 72.3 67.1 67.1 72.3 67.1 67.1
vperm 594 44 82.8 38.3 75.4 42.9 38.3 38.3
bitslice (16) 1,100 0 141.7 10.7 139.6 12.8 10.7 10.7

Piccolo-128 table 669 65 91.8 83.6 83.6 91.8 83.6 83.6
vperm 739 73 103.5 47.2 93.4 52.8 47.2 47.2
bitslice (16) 1,400 0 180.2 13.0 177.0 16.2 12.9 13.0

PRESENT-80 table 476 359 104.4 59.5 59.5 104.4 59.5 59.5
vperm 651 384 144.1 42.3 83.0 79.4 42.3 42.3
bitslice (8) 1,446 731 277.1 25.5 183.6 39.0 25.4 25.4
bitslice (16) 2,438 1,250 464.1 21.2 306.7 32.1 20.9 21.0

PRESENT-128 table 476 285 95.1 59.5 59.5 95.1 59.5 59.5
vperm 652 386 146.8 42.4 83.1 81.9 42.4 42.4
bitslice (8) 1,472 812 290.5 25.8 186.8 40.6 25.7 25.7
bitslice (16) 2,830 1,631 560.8 24.3 355.7 38.3 23.9 24.1

Even though the ciphers analyzed in [BGLP13] are probably not relevant for the applications1

we are interested in, the results signal that taking into account the possibility of using bit slicing2

in the (server side) implementation and non-feedback modes can be an important design con-3

sideration. Applications such as high-bandwith encryption for “1000×” networks would profit4

from this.5
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