Hash Functions

宋 凌
2021.04.07

Hash function

- Input: message of arbitrary size to data - Output: fixed size, say n bits.

- $H(m)$ is the fingerprint/digest/hash value of m

Cryptographic Hash Function

- Three properties of security

Cryptographic Hash Function

- Crypto hash function $\mathrm{h}(\mathrm{x})$ must provide
- Compression - output length is small
- Efficiency - $\mathrm{h}(\mathrm{x})$ easy to compute for any x
- Preimage resistance (One-way) - given a value y it is infeasible to find an x such that $\mathrm{h}(\mathrm{x})=\mathrm{y}$
- Second-preimage resistance - given x and $\mathrm{h}(\mathrm{x})$, infeasible to find $\mathrm{y} \neq \mathrm{x}$ such that $\mathrm{h}(\mathrm{y})=\mathrm{h}(\mathrm{x})$
- Strong collision resistance - infeasible to find any x and y , with $\mathrm{x} \neq \mathrm{y}$ such that $\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})$
- Many collisions exist, but cannot find any

Non-crypto Hash (1)

Data $\mathrm{X}=\left(\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}-1}\right)$, each X_{i} is a byte
\square Spse hash $(X)=X_{0}+X_{1}+X_{2}+\ldots+X_{n-1}$
\square Is this secure?

- Example: $\mathrm{X}=(10101010,00001111)$
- Hash is 10111001
- But so is hash of $\mathrm{Y}=(00001111,10101010)$
- Easy to find collisions, so not secure...

Non-crypto Hash (2)

- Data $\mathrm{X}=\left(\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}-1}\right)$
- Suppose hash is
o $\mathrm{h}(\mathrm{X})=\mathrm{n} \mathrm{X}_{0}+(\mathrm{n}-1) \mathrm{X}_{1}+(\mathrm{n}-2) \mathrm{X}_{2}+\ldots+1 \cdot \mathrm{X}_{\mathrm{n}-1}$
\square Is this hash secure? A \dagger leas \dagger $\mathrm{h}(10101010,00001111) \neq \mathrm{h}(00001111,10101010)$
- But hash of $(00000001,00001111)$ is same as hash of $(00000000,00010001)$
- Not secure, but it is used in the (non-crypto) application

Non-crypto Hash (3)

-Cyclic Redundancy Check (CRC)
\square Essentially, CRC is the remainder in a long division calculation
-Good for detecting burst errors

- Easy for Trudy to construct collisions
- CRC sometimes mistakenly used in crypto applications (WEP)

Popular Crypto Hashes

- MD5 - invented by Rivest
- 128-bit output
- Note: MD5 collisions were found
\square SHA-1 — US NIST standard (similar to MD5)
- 160-bit output
- Deprecated recently
- SHA-2 — US NIST standard (similar to SHA-1)
- Most widely used nowadays
- SHA-3 - US NIST standard
- SM3 - Chinese standard

Popular Crypto Hashes

Year	Hash function	construc tion	NIST Standard （US）	NESSIE Standard （Europe）	CRYPTREC Standard （Japan）	国密 标准
1990	MD4	MD				
1992	MD5	MD				
1995	SHA－1	MD	V		V	
1996	RIPEMD－160	MD			V	
2000	Whirlpool	MD		V	V	
2002	SHA－2	MD	V	V	V	
2010	SM3	MD				
2015	SHA－3	Sponge	V		V	

Crypto Hash Motivation

- Digital signature

In 1976, Whitfield Diffie and Martin Hellman first described the notion of a digital signature scheme, although they only conjectured that such schemes existed based on functions that are trapdoor one-way permutations. Soon afterwards, Ronald Rivest, Adi Shamir, and Len Adleman invented the RSA algorithm, which could be used to produce primitive digital signatures (although only as a proof-of-concept - "plain" RSA signatures are not secure).
--- from Wikipedia

- In 1978, Rabin proposed the idea of signing the fingerprint of a document.

Public Key Notation

\square Sign message M with Alice's private key: $[\mathrm{M}]_{\text {Alice }}$

- Encrypt message M with Alice's public key: $\{\mathrm{M}\}_{\text {Alice }}$
\square Then
$\left\{[\mathrm{M}]_{\text {Alice }}\right\}_{\text {Alice }}=\mathrm{M}$
$\left[\{\mathrm{M}\}_{\text {Alice }}\right]_{\text {Alice }}=\mathrm{M}$

Crypto Hash Motivation: Digital Signatures

- Suppose Alice signs M
- Alice sends M and $S=[M]_{\text {Alice }}$ to Bob
- Bob verifies that $\mathrm{M}=\{\mathrm{S}\}_{\text {Alice }}$
- If M is big, $[\mathrm{M}]_{\text {Alice }}$ is costly to compute
\square Suppose instead, Alice signs h(M), where $h(M)$ is much smaller than M
- Alice sends M and $S=[h(M)]_{\text {Alice }}$ to Bob
- Bob verifies that $h(M)=\{S\}_{\text {Alice }}$

Digital Signatures

- Digital signatures provide integrity
- Like MAC
- Why?
- Alice sends M and $S=[h(M)]_{\text {Alice }}$ to Bob
- If M changed to M^{\prime} or S changed to S^{\prime} (accident or intentional) Bob detects it:
$h\left(\mathrm{M}^{\prime}\right) \neq\{\mathrm{S}\}_{\text {Alice }} \mathrm{h}(\mathrm{M}) \neq\left\{\mathrm{S}^{\prime}\right\}_{\text {Alice }}, \mathrm{h}\left(\mathrm{M}^{\prime}\right) \neq\left\{\mathrm{S}^{\prime}\right\}_{\text {Alice }}$

Non-repudiation

\square Digital signature also provides for non-repudiation
\square Alice sends M and $S=[h(M)]_{\text {Alice }}$ to Bob

- Alice cannot "repudiate" signature - Alice cannot claim she did not sign M
- Why does this work?
a Is the same true of MAC?

Non-non-repudiation

A Alice orders 100 shares of stock from Bob

- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- Problem: Bob knows Alice placed the order, but he cannot prove it

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Hashing and Signatures

\square Alice signs $h(M)$, sends M and $S=[h(M)]_{\text {Alice }}$ to Bob and Bob verifies $h(M)=\{S\}_{\text {Alice }}$

- Security depends on public key system and hash function
\square Suppose Trudy can find collision: $\mathrm{M}^{\prime} \neq \mathrm{M}$ with $\mathrm{h}\left(\mathrm{M}^{\prime}\right)=\mathrm{h}(\mathrm{M})$
- Then Trudy can replace M with M^{\prime} and signature scheme is broken

Other applications

- Password protection

hash algorithm number

hash value or digest
Disciplina: $\$ 6$ m0mDqJL9 6uady5dsvPLD6njSx2Rf07o1HRYYu5DNHGdicBd7f9Q/ wckn. dLuZjc618Es7hvtEJbov11rvIdX/EC83aFVal: 17037:0:99999:7: : : colord:*:17043:0:99999:7: : :

- Integrity verification

a55353d837cbf7bc006cf49eeff05ae5044e757498e30643a9199b9a25bc9a34 *ubuntu-18.04-desktop-amd64. iso
7a1c2966f82268c14560386fbc467d58c3fbd2793f3b1f657baee609b80d39a8 *ubuntu-18. 04-1ive-server-amd64. iso

- Key generation
- Proof of work
- Bit coin

Crypto Hash Function Design

- Desired property: avalanche effect
- Any change to input affects lots of output bits
- Crypto hash functions consist of some number of rounds
- Analogous to block cipher in certain mode
- Want security and speed
- Avalanche effect after few rounds
- But simple rounds

Crypto Hash Function Design: MD construction

- Input data split into blocks
- Invoke a compression function iteratively
-Compression function applied to blocks
- Current block and previous block output
- Output for last block is the hash value
-For example
- Block size is 512 bits
- Compression function output is 128 bits

Crypto Hash Function Design: MD construction

This is known as Merkle-Damgård construction (1989). E.g. $n=128, r=512$

Crypto Hash: Fun Facts for MD

- If msg is one 512-bit block: $\mathrm{h}(\mathrm{M})=\mathrm{f}(\mathrm{IV}, \mathrm{M})$ where f and IV known to Trudy
- For 2 blocks:
$\mathrm{h}(\mathrm{M})=\mathrm{f}\left(\mathrm{f}\left(\mathrm{IV}, \mathrm{M}_{0}\right), \mathrm{M}_{1}\right)=\mathrm{f}\left(\mathrm{h}\left(\mathrm{M}_{0}\right), \mathrm{M}_{1}\right)$
\square In general $\mathrm{h}(\mathrm{M})=\mathrm{f}\left(\mathrm{h}\left(\mathrm{M}_{0}, \mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}-2}\right), \mathrm{M}_{\mathrm{n}-1}\right)$
- If $\mathrm{h}(\mathrm{M})=\mathrm{h}\left(\mathrm{M}^{\prime}\right)$ then $\mathrm{h}(\mathrm{M}, \mathrm{X})=\mathrm{h}\left(\mathrm{M}^{\prime}, \mathrm{X}\right)$ for any X

Hashing and Birthdays

- The "birthday problem" arises in many crypto contexts
- We discuss it in hashing context
- And "birthday attack" on digital signature
- Then Nostradamus attack
- Learn how to predict the future!
- Works against any hash that uses MerkleDamgard construction

Pre-Birthday Problem

\square Suppose t people in a room

- How large must t be before the probability someone has same birthday as me is $\geq 1 / 2$
- Solve: $1 / 2=1-(364 / 365)^{t}$ for t
- Find $\mathrm{t}=253$

Birthday Problem

- How many people must be in a room before probability is $\geq 1 / 2$ that two or more have same birthday?
- Suppose there are 365 days in a year. - Answer is 23.
\square Why?

Birthday Problem

$$
\begin{aligned}
& \frac{365}{365} \times \frac{365-1}{365} \times \cdots \times \frac{365-t+1}{365} \\
= & 1 \times\left(1-\frac{1}{365}\right) \times \cdots \times\left(1-\frac{t-1}{365}\right) \\
\approx & 1 \times e^{-\frac{1}{365}} \times \cdots \times e^{-\frac{t-1}{365}}=e^{-\frac{t(t-1)}{2 \times 365}}
\end{aligned}
$$

Set $1-e^{-\frac{t(t-1)}{2 \times 365}}=0.5$ and solve: $\mathrm{t}=23$
\square Surprising? A paradox?
\square No, it "should be" about $\sqrt{365}$ since compare pairs x and y

Birthday Problem - a generalized version

- Given a set with size N
-Choose t elements at random
- The probability p that at least one collision happens is $1-e^{-\frac{t(t-1)}{2 N}}$.
LLet $1-e^{-\frac{t(t-1)}{2 N}}=0.5, t \approx 1.177 \sqrt{N}$.

Birthday attack on Hash functions

- Suppose a hash function H outputs n bit digests, e.g., $n=128$.
a Collision attack: find x_{1}; x_{2} such that $H\left(x_{1}\right)=H\left(x_{2}\right)$
aPick t inputs x_{i}, and compute $H\left(x_{i}\right)$
-Let $p=0.5$, then $t=1.177 \times 2^{128 / 2}$
- The brute-force attack of hash functions

Signature Birthday Attack

- Suppose hash output is n bits
- Trudy selects evil message E - Wants to get Alice's signature on E
- Trudy creates innocent message I - Alice willing to sign message I
- How can Trudy use birthday problem?

Signature Birthday Attack

- Trudy creates $2^{\mathrm{n} / 2}$ variants of I
- All have same meaning as I
- Trudy hashes each: $\mathrm{h}\left(\mathrm{I}_{0}\right), \mathrm{h}\left(\mathrm{I}_{1}\right), \ldots$
- Trudy creates $2^{\mathrm{n} / 2}$ variants of E
- All have same meaning as E
- Trudy hashes each: $\mathrm{h}\left(\mathrm{E}_{0}\right), \mathrm{h}\left(\mathrm{E}_{1}\right), \ldots$
- By birthday problem, $h\left(I_{j}\right)=h\left(E_{k}\right)$, some j,k

Signature Birthday Attack

\square Alice signs innocent message l_{j}

- Then Trudy has $\left[\mathrm{h}\left(\mathrm{I}_{\mathrm{j}}\right)\right]_{\text {Alice }}$
\square But $\left[\mathrm{h}\left(\mathrm{I}_{\mathrm{j}}\right)\right]_{\text {Alice }}=\left[\mathrm{h}\left(\mathrm{E}_{\mathrm{k}}\right)\right]_{\text {Alice }}$
- Alice unwittingly "signed" evil E_{k}
- Attack relies only on birthday problem

Online Bid Example

\square Suppose Alice, Bob, Charlie are bidders

- Alice plans to bid A, Bob B and Charlie C
- They do not trust that bids will be secret
- Nobody willing to submit their bid
- Solution?
- Alice, Bob, Charlie submit hashes h(A),h(B),h(C)
- All hashes received and posted online
- Then bids A, B and C revealed
- Hashes do not reveal bids (one way)
- Cannot change bid after hash sent (collision)

Online Bid

- This protocol is not secure!
\square A forward search attack is possible
- Bob computes h(A) for likely bids A
aHow to prevent this?
\square Alice computes $\mathrm{h}(\mathrm{A}, \mathrm{R}), \mathrm{R}$ is random - Then Alice must reveal A and R - Trudy cannot try all A and R

Online Bid

\square Spse $B=\$ 1000$ and Bob submits $h(B, R)$

- When revealed, $B=\$ 1000$ and $C=\$ 2000$
\square Bob wants to change his bid: $\mathrm{B}^{\prime}=\$ 3$
- Bob computes $h\left(B^{\prime}, R^{\prime}\right)$ for different R^{\prime} until he finds $h\left(B^{\prime}, R^{\prime}\right)=h(B, R)$
- How much work?
- Apparently, about 2^{n} hashes required

Second－ preimage Attack

$2^{\text {n }}$
－Hash sometimes used to commit
－For example，online bid example
－Attack on second preimages requires work of about 2^{n} hashes
－Collision attack is only about $2^{\mathrm{n} / 2}$
－Nostradamus attack solves second－preimage problem with only about $2^{\mathrm{n} / 2}$ hashes
－For some cases，such as online bid example
－Applicable to any Merkle－Damgård hash

Trudy Predicts Future?

- Trudy claims she can predict future
\square Jan 1, 2021, she publishes y , claiming $\mathrm{y}=\mathrm{h}(\mathrm{x})$
- Where x has final S\&P 500 index for 2021 and other predictions for 2022 and beyond
- Jan 1, 2022, Trudy reveals x , with $\mathrm{y}=\mathrm{h}(\mathrm{x})$
- And x has S\&P 500 index for Dec. 31, 2021 along with other rambling predictions for 2022
- Does this prove Trudy can predict future?

Trudy Predicts Future?

- Trudy specifies y in advance
aLet P be S\&P 500 for Dec 31, 2021
- Assuming Trudy cannot predict future, she must find S so that $y=h(P, S)$
- Trudy can hash 2^{n} different S
- But, we assume this is too much work - Is there any shortcut?

Michael Noftradamus
 His PROPHECIES,

Ad Cxfirm Noftradanuan Filinm vila

- Nostradamus (1503-1566) was a prophet
- Some claim he predicted historical events

Nostradamus

- His predictive powers work best in retrospect Attack
- Nostradamus attack
- Trudy can predict the future
- Convert 2^{n} second-preimage problem into about $2^{\mathrm{n} / 2}$ collision attack (essentially)
- Applies to any Merkle-Damgård hash function

Nostradamus Attack

-Computing collisions: each $2.2^{\mathrm{n} / 2}$ work - Comparing one set to another set
\square Pre-compute collisions in clever way

- This determines y, the hash value
\square When we specify prefix P, we can "herd" collisions into hash value y
- Suffix S determined in this process

Diamond Structure

\square Choose M_{0} randomly
-Compute $\mathrm{d}_{00}=\mathrm{f}\left(\mathrm{IV}, \mathrm{M}_{0}\right)$
\square And $\mathrm{M}_{1}, \ldots, \mathrm{M}_{7}$
\square Then find $\mathrm{M}_{00}, \mathrm{M}_{01}$ that give collision: $\mathrm{d}_{10}=\mathrm{f}\left(\mathrm{d}_{00}, \mathrm{M}_{00}\right)=\mathrm{f}\left(\mathrm{d}_{01}, \mathrm{M}_{01}\right)$
\square Continue: $y=d_{30}$ is pre-determined hash

Nostradamus Attack

\square Pre-computation

- Compute diamond structure of "height" 2^{k}
- Choose y $=\mathrm{d}_{\mathrm{k} 0}$ as hash of prediction
- When "prediction" is known, Trudy will
- Let P be "prediction"
- Select S' at random, where ($\mathrm{P}, \mathrm{S}^{\prime}$) one block
- Until she finds $f\left(I V, P, S^{\prime}\right)=\mathrm{d}_{0 \mathrm{j}}$ for some j

Nostradamus Attack

\square Once such S^{\prime} is found, Trudy has result - Follow directed path from $\mathrm{d}_{0 \mathrm{j}}$ to $\mathrm{d}_{\mathrm{k} 0}$
\square In previous diamond structure example, suppose Trudy finds $f\left(I V, P, S^{\prime}\right)=d_{02}$

- Then $h\left(P, S^{\prime}, M_{02}, M_{11}, M_{20}\right)=d_{30}=y$
- Recall that y is hash of Trudy's "prediction"
- Let $\mathrm{x}=\left(\mathrm{P}, \mathrm{S}^{\prime}, \mathrm{M}_{02}, \mathrm{M}_{11}, \mathrm{M}_{20}\right)$
- And x is Trudy's "prediction": P is S\&P 500 index, $\mathrm{S}^{\prime}, \mathrm{M}_{02}, \mathrm{M}_{11}, \mathrm{M}_{20}$ are future predictions

Nostradamus Attack

- How much work?
- Assuming diamond structure is of height 2^{k} and hash output is n bits
-Primary: $2 \cdot 2^{\mathrm{n} / 2}\left(2^{\mathrm{k}}-1\right) \approx 2^{\mathrm{n} / 2+\mathrm{k}+1}$
- Can reduce this to $2^{n / 2+k / 2+1}$
\square Secondary: $2^{\mathrm{n}-\mathrm{k}}$

Nostradamus Attack

- To minimize work, set primary work equal to secondary work, solve for k
- We have $n / 2+k / 2+1=n-k$ which implies $k=(n-4) / 3$
-For MD4 or MD5, $n=128$, so $k=41$
- Diamond structure of height 2^{41}
- Total work is about 2^{87}

Nostradamus: Bottom Line

-Generic attack on any hash that uses Merkle-Damgard construction
\square Not practical for 128-bit hash

- Almost practical with small success prob
- Using hash to commit to something, is not quite as strong as it seems
- Weakness of MD construction

Summary

- Security requirements of crypto hash functions
- Applications:
- Digital signature, integrity verification, ...
- Brute-force attack: birthday attack
\square MD construction
- Weak second-preimage resistance

