
Hash Functions

宋 凌

2021.04.07

Hash function

𝑚

𝐻(𝑚)

𝑛

❑ Input: message of arbitrary size to data

❑ Output: fixed size, say n bits.

❑ H(m) is the fingerprint/digest/hash value
of m

Cryptographic Hash Function

❑ Three properties of security

Cryptographic Hash Function

❑ Crypto hash function h(x) must provide
o Compression ⎯ output length is small

o Efficiency ⎯ h(x) easy to compute for any x

o Preimage resistance (One-way) ⎯ given a value
y it is infeasible to find an x such that h(x) = y

o Second-preimage resistance ⎯ given x and h(x),
infeasible to find y  x such that h(y) = h(x)

o Strong collision resistance ⎯ infeasible to find
any x and y, with x  y such that h(x) = h(y)

❑ Many collisions exist, but cannot find any

Non-crypto Hash (1)

❑ Data X = (X0,X1,X2,…,Xn-1), each Xi is a byte

❑ Spse hash(X) = X0+X1+X2+…+Xn-1

❑ Is this secure?

❑ Example: X = (10101010,00001111)

❑ Hash is 10111001

❑ But so is hash of Y = (00001111,10101010)

❑ Easy to find collisions, so not secure…

Non-crypto Hash (2)

❑ Data X = (X0,X1,X2,…,Xn-1)

❑ Suppose hash is
o h(X) = nX0+(n-1)X1+(n-2)X2+…+1Xn-1

❑ Is this hash secure? At least

h(10101010,00001111)h(00001111,10101010)

❑ But hash of (00000001,00001111) is same as
hash of (00000000,00010001)

❑ Not secure, but it is used in the (non-crypto)
application

Non-crypto Hash (3)

❑Cyclic Redundancy Check (CRC)

❑Essentially, CRC is the remainder in a
long division calculation

❑Good for detecting burst errors

❑Easy for Trudy to construct collisions

❑CRC sometimes mistakenly used in
crypto applications (WEP)

Popular Crypto Hashes

❑ MD5 ⎯ invented by Rivest
o 128-bit output

o Note: MD5 collisions were found

❑ SHA-1 ⎯ US NIST standard (similar to MD5)
o 160-bit output

o Deprecated recently

❑ SHA-2 ⎯ US NIST standard (similar to SHA-1)
o Most widely used nowadays

❑ SHA-3 ⎯ US NIST standard

❑ SM3 ⎯ Chinese standard

Popular Crypto Hashes

Year
Hash

function

construc
tion

NIST
Standard

(US)

NESSIE

Standard

(Europe)

CRYPTREC

Standard

(Japan)

国密
标准

1990 MD4 MD

1992 MD5 MD

1995 SHA-1 MD √ √

1996 RIPEMD-160 MD √

2000 Whirlpool MD √

2002 SHA-2 MD √ √ √

2010 SM3 MD √

2015 SHA-3 Sponge √ √

Crypto Hash Motivation

❑ Digital signature

❑ In 1978, Rabin proposed the idea of signing
the fingerprint of a document.

In 1976, Whitfield Diffie and Martin Hellman first described the
notion of a digital signature scheme, although they only
conjectured that such schemes existed based on functions that are
trapdoor one-way permutations. Soon afterwards, Ronald Rivest,
Adi Shamir, and Len Adleman invented the RSA algorithm, which
could be used to produce primitive digital signatures (although only
as a proof-of-concept – "plain" RSA signatures are not secure).

--- from Wikipedia

Public Key Notation

❑Sign message M with Alice’s
private key: [M]Alice

❑Encrypt message M with Alice’s
public key: {M}Alice

❑Then

{[M]Alice}Alice = M

[{M}Alice]Alice = M

Crypto Hash Motivation:
Digital Signatures

❑ Suppose Alice signs M
o Alice sends M and S = [M]Alice to Bob

o Bob verifies that M = {S}Alice

❑ If M is big, [M]Alice is costly to compute

❑ Suppose instead, Alice signs h(M), where
h(M) is much smaller than M
o Alice sends M and S = [h(M)]Alice to Bob

o Bob verifies that h(M) = {S}Alice

Digital Signatures

❑ Digital signatures provide integrity
o Like MAC

❑ Why?

❑ Alice sends M and S = [h(M)]Alice to Bob

❑ If M changed to M or S changed to S
(accident or intentional) Bob detects it:

h(M)  {S}Alice, h(M)  {S}Alice, h(M)  {S}Alice

Non-repudiation

❑Digital signature also provides for
non-repudiation

❑Alice sends M and S = [h(M)]Alice to Bob

❑Alice cannot “repudiate” signature
o Alice cannot claim she did not sign M

❑Why does this work?

❑ Is the same true of MAC?

Non-non-repudiation

❑ Alice orders 100 shares of stock from Bob

❑ Alice computes MAC using symmetric key

❑ Stock drops, Alice claims she did not order

❑ Can Bob prove that Alice placed the order?

❑ No! Since Bob also knows symmetric key,
he could have forged message

❑ Problem: Bob knows Alice placed the order,
but he cannot prove it

Non-repudiation

❑ Alice orders 100 shares of stock from Bob

❑ Alice signs order with her private key

❑ Stock drops, Alice claims she did not order

❑ Can Bob prove that Alice placed the order?

❑ Yes! Only someone with Alice’s private key
could have signed the order

❑ This assumes Alice’s private key is not
stolen (revocation problem)

Hashing and Signatures

❑ Alice signs h(M), sends M and S = [h(M)]Alice

to Bob and Bob verifies h(M) = {S}Alice

❑ Security depends on public key system and
hash function

❑ Suppose Trudy can find collision: M M

with h(M) = h(M)

❑ Then Trudy can replace M with M and
signature scheme is broken

Other applications

❑ Password protection

❑ Integrity verification

❑ Key generation

❑ Proof of work
o Bit coin

Crypto Hash Function Design

❑ Desired property: avalanche effect
o Any change to input affects lots of output bits

❑ Crypto hash functions consist of some
number of rounds
o Analogous to block cipher in certain mode

❑ Want security and speed
o Avalanche effect after few rounds

o But simple rounds

Crypto Hash Function Design:
MD construction

❑ Input data split into blocks

❑ Invoke a compression function iteratively

❑Compression function applied to blocks
o Current block and previous block output

o Output for last block is the hash value

❑For example
o Block size is 512 bits

o Compression function output is 128 bits

Crypto Hash Function Design:
MD construction

This is known as Merkle-Damgård construction (1989).
E.g. n = 128, r = 512

Crypto Hash: Fun Facts for MD

❑ If msg is one 512-bit block: h(M) = f(IV,M)

where f and IV known to Trudy

❑ For 2 blocks:

h(M) = f(f(IV,M0),M1) = f(h(M0),M1)

❑ In general h(M) = f(h(M0,M1,…,Mn−2),Mn−1)

o If h(M) = h(M) then h(M,X) = h(M,X) for any X

Hashing and Birthdays

❑ The “birthday problem” arises in many
crypto contexts

❑ We discuss it in hashing context
o And “birthday attack” on digital signature

❑ Then Nostradamus attack
o Learn how to predict the future!

o Works against any hash that uses Merkle-
Damgard construction

Pre-Birthday Problem

❑Suppose t people in a room

❑How large must t be before the
probability someone has same
birthday as me is  1/2

o Solve: 1/2 = 1 − (364/365)t for t

o Find t = 253

Birthday Problem

❑How many people must be in a room
before probability is  1/2 that two or
more have same birthday?
o Suppose there are 365 days in a year.

o Answer is 23.

❑Why?

Birthday Problem

Set 1 − 𝑒−
𝑡(𝑡−1)

2×365 = 0.5 and solve: t = 23

❑Surprising? A paradox?

❑No, it “should be” about 365 since
compare pairs x and y

= 1 × (1 −
1

365
) × ⋯× (1 −

𝑡 − 1

365
)

≈ 1 × 𝑒−
1
365 ×⋯× 𝑒−

𝑡−1
365 = 𝑒−

𝑡(𝑡−1)
2×365

365

365
×
365 − 1

365
×⋯×

365 − 𝑡 + 1

365

Birthday Problem – a
generalized version

❑Given a set with size N

❑Choose t elements at random

❑The probability p that at least one

collision happens is 1 − 𝑒−
𝑡(𝑡−1)

2𝑁 .

❑ Let 1 − 𝑒−
𝑡(𝑡−1)

2𝑁 = 0.5, 𝒕 ≈ 𝟏. 𝟏𝟕𝟕 𝑵.

Birthday attack on Hash
functions

❑Suppose a hash function H outputs n-
bit digests, e.g., n = 128.

❑Collision attack: find x1; x2 such that
H(x1) = H(x2)

❑ Pick t inputs xi , and compute H(xi)

❑ Let p = 0.5, then t=1.177× 2128/2

❑The brute-force attack of hash
functions

Signature Birthday Attack

❑Suppose hash output is n bits

❑Trudy selects evil message E
o Wants to get Alice’s signature on E

❑Trudy creates innocent message I
o Alice willing to sign message I

❑How can Trudy use birthday problem?

Signature Birthday Attack

❑ Trudy creates 2n/2 variants of I
o All have same meaning as I

o Trudy hashes each: h(I0),h(I1),…

❑ Trudy creates 2n/2 variants of E
o All have same meaning as E

o Trudy hashes each: h(E0),h(E1),…

❑ By birthday problem, h(Ij)= h(Ek), some j,k

Signature Birthday Attack

❑Alice signs innocent message Ij
❑Then Trudy has [h(Ij)]Alice

❑But [h(Ij)]Alice = [h(Ek)]Alice

❑Alice unwittingly “signed” evil Ek

❑Attack relies only on birthday problem

Online Bid Example

❑ Suppose Alice, Bob, Charlie are bidders

❑ Alice plans to bid A, Bob B and Charlie C
o They do not trust that bids will be secret

o Nobody willing to submit their bid

❑ Solution?
o Alice, Bob, Charlie submit hashes h(A),h(B),h(C)

o All hashes received and posted online

o Then bids A, B and C revealed

❑ Hashes do not reveal bids (one way)

❑ Cannot change bid after hash sent (collision)

Online Bid

❑This protocol is not secure!

❑A forward search attack is possible
o Bob computes h(A) for likely bids A

❑How to prevent this?

❑Alice computes h(A,R), R is random
o Then Alice must reveal A and R

o Trudy cannot try all A and R

Online Bid

❑Spse B = $1000 and Bob submits h(B,R)

❑When revealed, B = $1000 and C = $2000

❑Bob wants to change his bid: B = $3

❑Bob computes h(B,R) for different R

until he finds h(B,R) = h(B,R)

o How much work?

o Apparently, about 2n hashes required

Second-
preimage
Attack

❑ Hash sometimes used to commit
o For example, online bid example

❑ Attack on second preimages requires work of about 2n hashes
❑ Collision attack is only about 2n/2

❑ Nostradamus attack solves second-preimage problem with only
about 2n/2 hashes
o For some cases, such as online bid example
o Applicable to any Merkle-Damgård hash

Trudy Predicts Future?

❑ Trudy claims she can predict future

❑ Jan 1, 2021, she publishes y, claiming y = h(x)

o Where x has final S&P 500 index for 2021 and
other predictions for 2022 and beyond

❑ Jan 1, 2022, Trudy reveals x, with y = h(x)

o And x has S&P 500 index for Dec. 31, 2021 along
with other rambling predictions for 2022

❑ Does this prove Trudy can predict future?

Trudy Predicts Future?

❑Trudy specifies y in advance

❑ Let P be S&P 500 for Dec 31, 2021

❑Assuming Trudy cannot predict future,
she must find S so that y = h(P,S)

❑Trudy can hash 2n different S
o But, we assume this is too much work

o Is there any shortcut?

Nostradamus
Attack

❑ Nostradamus (1503-1566) was a prophet

o Some claim he predicted historical events

o His predictive powers work best in retrospect

❑ Nostradamus attack

o Trudy can predict the future

o Convert 2n second-preimage problem into
about 2n/2 collision attack (essentially)

o Applies to any Merkle-Damgård hash function

Nostradamus Attack

❑Computing collisions: each 22n/2 work
o Comparing one set to another set

❑ Pre-compute collisions in clever way

❑This determines y, the hash value

❑When we specify prefix P, we can
“herd” collisions into hash value y
o Suffix S determined in this process

Diamond Structure
❑Choose M0

randomly

❑Compute

d00 = f(IV,M0)

❑And M1,…,M7

❑Then find M00,M01 that give collision:

d10 = f(d00,M00) = f(d01,M01)

❑Continue: y = d30 is pre-determined hash

Nostradamus Attack

❑ Pre-computation
o Compute diamond structure of “height” 2k

o Choose y = dk0 as hash of prediction

❑When “prediction” is known, Trudy will
o Let P be “prediction”

o Select S at random, where (P,S) one block

o Until she finds f(IV,P,S)=d0j for some j

Nostradamus Attack

❑ Once such S is found, Trudy has result
o Follow directed path from d0j to dk0

❑ In previous diamond structure example,
suppose Trudy finds f(IV,P,S) = d02

❑ Then h(P,S,M02,M11,M20) = d30 = y

o Recall that y is hash of Trudy’s “prediction”

❑ Let x = (P,S,M02,M11,M20)

❑ And x is Trudy’s “prediction”: P is S&P 500
index, S,M02,M11,M20 are future predictions

Nostradamus Attack

❑How much work?

❑Assuming diamond structure is of
height 2k and hash output is n bits

❑ Primary: 22n/2(2k − 1) ≈ 2n/2+k+1

o Can reduce this to 2n/2+k/2+1

❑Secondary: 2n−k

Nostradamus Attack

❑To minimize work, set primary work
equal to secondary work, solve for k

❑We have n/2 + k/2 + 1 = n − k which
implies k = (n − 4)/3

❑For MD4 or MD5, n = 128, so k = 41

❑Diamond structure of height 241

❑Total work is about 287

Nostradamus: Bottom Line

❑Generic attack on any hash that uses
Merkle-Damgard construction

❑Not practical for 128-bit hash
o Almost practical with small success prob

❑Using hash to commit to something, is
not quite as strong as it seems

❑Weakness of MD construction

Summary

❑Security requirements of crypto hash
functions

❑Applications:
o Digital signature, integrity verification, …

❑Brute-force attack: birthday attack

❑MD construction
o Weak second-preimage resistance

