Cryptanalysis of Keccak

Ling Song

8 May 2021

Outlines

(1) Introduction

(2) Preimage Attack
(3) Collision Attack
(4) Summary

Outline

(1) Introduction

- Description of SHA-3 (КесСак)

(2) Preimage Attack

(3) Collision Attack
(4) Summary

NIST Standards of Secure Hash Algorithm

SHA-3 Hash Function

The sponge construction [BDPV11]

sponge

- b-bit permutation f
- Two parameters: bitrate r, capacity c, and $b=r+c$.
- The message is padded and then split into r-bit blocks.

Instances of Keccak and SHA-3

Based on the Sponge construction with a permutation called Кессак- f (Кессак-p):

- Keccak versions
- $\operatorname{Keccak}[c], c=2 d, d=224 / 256 / 384 / 512$.
- SHA-3 versions
- SHA3- $n, n=224 / 256 / 384 / 512$ and $c=2 n, d=n$.
- SHAKEn (eXtendable Output Functions, XOFs)

$$
\begin{aligned}
& \star \quad(\text { SHAKE }=\text { SHA }+ \text { KEccak }) \\
& \star n=128 / 256, c=2 n, d \leq 2 n .
\end{aligned}
$$

- Instances of Keccak challenge
- $\operatorname{Keccak}\left[r, c, n_{r}, d\right]$ where d is the digest size, and n_{r} is the number of rounds.
- For the category of collision challenges, $d=c=160$.

SHA-3 Hash Function

Кессак-f permutation

- 1600 bits: seen as a 5×5 array of 64-bit lanes, $A[x, y], 0 \leq x, y<5$
- 24 rounds
- each round R consists of five steps:

$$
R=\iota \circ \chi \circ \pi \circ \rho \circ \theta
$$

http://www.iacr.org/authors/tikz/

- χ : the only nonlinear operation, a 5-bit Sbox applies to each row.

SHA-3 Hash Function

Keccak permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$
θ step: adding two columns to the current bit

$$
\begin{aligned}
C[x]= & A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus \\
& A[x, 3] \oplus A[x, 4] \\
D[x]= & C[x-1] \oplus(C[x+1] \lll 1) \\
A[x, y]= & A[x, y] \oplus D[x]
\end{aligned}
$$

http://keccak.noekeon.org/

- The Column Parity kernel
- If $C[x]=0,0 \leq x<5$, then the state A is in the CP kernel.

SHA-3 Hash Function

Keccak permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$
ρ step: lane level rotations, $A[x, y]=A[x, y] \lll r[x, y]$

http://keccak.noekeon.org/
Rotation offsets $r[x, y]$

	$x=0$	$x=1$	$x=2$	$x=3$	$x=4$
$y=0$	0	1	62	28	27
$y=1$	36	44	6	55	20
$y=2$	3	10	43	25	39
$y=3$	41	45	15	21	8
$y=4$	18	2	61	56	14

SHA-3 Hash Function

Keccak permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

π step: permutation on lanes

$$
A[y, 2 * x+3 * y]=A[x, y]
$$

SHA-3 Hash Function

Keccak permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$
χ step: 5-bit S-boxes, nonlinear operation on rows

$$
\begin{aligned}
& y_{0}=x_{0}+\left(x_{1}+1\right) \cdot x_{2}, \\
& y_{1}=x_{1}+\left(x_{2}+1\right) \cdot x_{3}, \\
& y_{2}=x_{2}+\left(x_{3}+1\right) \cdot x_{4}, \\
& y_{3}=x_{3}+\left(x_{4}+1\right) \cdot x_{0}, \\
& y_{4}=x_{4}+\left(x_{0}+1\right) \cdot x_{1} .
\end{aligned}
$$

SHA-3 Hash Function

Keccaк permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$
ι step: adding a round constant to the state

Adding one round-dependent constant to the first "lane", to destroy the symmetry.

Without ι

- The round function would be symmetric.
- All rounds would be the same.
- Fixed points exist.
- Vulnerable to rotational attacks, slide attacks, ...

Description of SHA-3 (Кессак)

Round function of Kессак- f
Internal state A: a 5×5 array of 64-bit lanes

$$
\begin{aligned}
\theta \text { step } & C[x]=A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4] \\
& D[x]=C[x-1] \oplus(C[x+1] \lll 1) \\
& A[x, y]=A[x, y] \oplus D[x] \\
\rho \text { step } & A[x, y]=A[x, y] \lll r[x, y]
\end{aligned}
$$

- The constants $r[x, y]$ are the rotation offsets.
π step $A[y, 2 * x+3 * y]=A[x, y]$
χ step $A[x, y]=A[x, y] \oplus((A[x+1, y]) \& A[x+2, y])$
ι step $A[0,0]=A[0,0] \oplus R C$
$-R C[i]$ are the round constants.
$L \triangleq \pi \circ \rho \circ \theta$
The only non-linear operation is χ step.

Outline

Introduction

(2) Preimage Attack

- Properties of χ and θ
- Linear Structure

3 Collision Attack

4 Summary

Security Requirements

Preimage

2^{n}

Preimage Attack: Strategy

- Simplest case: Given a d-bit digest, find an r-bit message block M_{1}.
- Padding and c bits capacity are out of control
- Permutation f is reduced

How to keep the Sbox χ linear

The expression of $b=\chi(a)$ is of algebraic degree 2:
$b_{i}=a_{i}+\overline{a_{i+1}} \cdot a_{i+2}$, for $i=0,1, \ldots, 4$.

How to keep the Sbox χ linear

The expression of $b=\chi(a)$ is of algebraic degree 2:
$b_{i}=a_{i}+\overline{a_{i+1}} \cdot a_{i+2}$, for $i=0,1, \ldots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

How to keep the Sbox χ linear

The expression of $b=\chi(a)$ is of algebraic degree 2:
$b_{i}=a_{i}+\overline{a_{i+1}} \cdot a_{i+2}$, for $i=0,1, \ldots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

How to keep the Sbox χ linear

The expression of $b=\chi(a)$ is of algebraic degree 2:
$b_{i}=a_{i}+\overline{a_{i+1}} \cdot a_{i+2}$, for $i=0,1, \ldots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

\checkmark

x

How to keep χ^{-1} linear

$a=\chi^{-1}(b)$ is of algebraic degree 3: $a_{i}=b_{i} \oplus \overline{b_{i+1}} \cdot\left(b_{i+2} \oplus \overline{b_{i+3}} \cdot b_{i+4}\right)$

Our Setting

keep $y_{3}=0, y_{4}=1$, and y_{1} constant, then χ^{-1} becomes linear.

How to keep χ^{-1} linear

 $a=\chi^{-1}(b)$ is of algebraic degree $3: a_{i}=b_{i} \oplus \overline{b_{i+1}} \cdot\left(b_{i+2} \oplus \overline{b_{i+3}} \cdot b_{i+4}\right)$
Our Setting

keep $y_{3}=0, y_{4}=1$, and y_{1} constant, then χ^{-1} becomes linear.

Properties of θ

Definition of θ operation:

$$
\begin{aligned}
& C[x]=A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4] \\
& D[x]=C[x-1] \oplus(C[x+1] \lll 1) \\
& A[x, y]=A[x, y] \oplus D[x]
\end{aligned}
$$

Properties of θ

$$
\begin{aligned}
& \text { Definition of } \theta \text { operation: } \\
& C[x]=A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4] \\
& D[x]=C[x-1] \oplus(C[x+1] \ll 1<1) \\
& A[x, y]=A[x, y] \oplus D[x]
\end{aligned}
$$

Properties:

When $C[x]$ is forced to be a constant, i.e., the sum of the all columns are kept to be constants, then θ acts the same as adding a constant.

Properties of θ

$$
\begin{aligned}
& \text { Definition of } \theta \text { operation: } \\
& C[x]=A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4] \\
& D[x]=C[x-1] \oplus(C[x+1] \lll 1) \\
& A[x, y]=A[x, y] \oplus D[x]
\end{aligned}
$$

Properties:

When $C[x]$ is forced to be a constant, i.e., the sum of the all columns are kept to be constants, then θ acts the same as adding a constant.

When differential attack is applied, and the sum of differences of all columns are kept to be zero ($C[x]=0$ for all x), then θ acts the same as identity. This special structure is called CP-kernel (Column Parity).

θ acts like identity

When the sum of all columns are constants, θ acts like identity w.r.t. the variables.

x	c	c	c	c
$x+c$	c	c	c	c
c	c	c	c	c
c	c	c	c	c
c	c	c	c	c

$x+c$	c	c	c	c
$x+c$	c	c	c	c
c	c	c	c	c
c	c	c	c	c
c	c	c	c	c

II
$\sum=c$
c denotes a binary constant with value either 0 or 1 .

Linear Structure

Keeping $1+1$ rounds being linear with the degree of freedom up to 512

Linear Structure

Keeping $1+2$ rounds being linear with the degree of freedom up to 194

Preimage Attack on 3-Round SHAKE128 (1)

$64 * 2$ variables, $64 * 2$ quadratic equations. Solving systems of non-linear equations is hard.

Setting up linear equations from the output of χ

Bilinear structure of χ
$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$
\begin{align*}
& b_{0}=a_{0} \oplus \overline{a_{1}} \cdot a_{2} \tag{1}\\
& b_{1}=a_{1} \oplus \overline{a_{2}} \cdot a_{3} \tag{2}
\end{align*}
$$

Setting up linear equations from the output of χ

Bilinear structure of χ
$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$
\begin{align*}
& b_{0}=a_{0} \oplus \overline{a_{1}} \cdot a_{2} \tag{1}\\
& b_{1}=a_{1} \oplus \overline{a_{2}} \cdot a_{3} \tag{2}
\end{align*}
$$

Multiplying a_{2} to both sides of (2), one obtains:

$$
\begin{equation*}
b_{1} \cdot a_{2}=\left(a_{1} \oplus \overline{a_{2}} \cdot a_{3}\right) \cdot a_{2}=a_{1} \cdot a_{2} \tag{3}
\end{equation*}
$$

Setting up linear equations from the output of χ

Bilinear structure of χ
$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$
\begin{align*}
& b_{0}=a_{0} \oplus \overline{a_{1}} \cdot a_{2} \tag{1}\\
& b_{1}=a_{1} \oplus \overline{a_{2}} \cdot a_{3} \tag{2}
\end{align*}
$$

Multiplying a_{2} to both sides of (2), one obtains:

$$
\begin{equation*}
b_{1} \cdot a_{2}=\left(a_{1} \oplus \overline{a_{2}} \cdot a_{3}\right) \cdot a_{2}=a_{1} \cdot a_{2} \tag{3}
\end{equation*}
$$

and thus according to (1) we obtain

$$
\begin{equation*}
b_{0}=a_{0} \oplus \overline{b_{1}} \cdot a_{2} \tag{4}
\end{equation*}
$$

Given two consecutive bits of the output of χ, one linear equation on the input bits can be set up.

Setting up linear equations from the output of χ

Bilinear structure of χ
$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$
\begin{align*}
& b_{0}=a_{0} \oplus \overline{a_{1}} \cdot a_{2} \tag{1}\\
& b_{1}=a_{1} \oplus \overline{a_{2}} \cdot a_{3} \tag{2}
\end{align*}
$$

Multiplying a_{2} to both sides of (2), one obtains:

$$
\begin{equation*}
b_{1} \cdot a_{2}=\left(a_{1} \oplus \overline{a_{2}} \cdot a_{3}\right) \cdot a_{2}=a_{1} \cdot a_{2} \tag{3}
\end{equation*}
$$

and thus according to (1) we obtain

$$
\begin{equation*}
b_{0}=a_{0} \oplus \overline{b_{1}} \cdot a_{2} \tag{4}
\end{equation*}
$$

Given two consecutive bits of the output of χ, one linear equation on the input bits can be set up.

Preimage attack on 3-round SHAKE128

 $64 * 2$ variables, 64 linear equations.
Setting up more linear equations

$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

Setting 1

Guess $a_{i+1}=0$ or 1 , then b_{i} becomes linear.

Setting up more linear equations

$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

Setting 1

Guess $a_{i+1}=0$ or 1 , then b_{i} becomes linear.

Setting 2

$b_{i}=a_{i}$ holds with probability 0.75 when input bit a_{j} is uniformly distributed, for all $i \in\{0, \ldots, 4\}$.

Setting up more linear equations

$\chi: b_{i}=a_{i} \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

Setting 1

Guess $a_{i+1}=0$ or 1 , then b_{i} becomes linear.

Setting 2

$b_{i}=a_{i}$ holds with probability 0.75 when input bit a_{j} is uniformly distributed, for all $i \in\{0, \ldots, 4\}$.

Preimage attack on 3-round SHAKE 128

Setting $164 * 2$ variables, $64+32+32$ linear equations (guess 32 bits), complexity 2^{32}
Setting $264 * 2$ variables, $64+64$ linear equations, complexity $\frac{1}{0.75^{64}}=2^{26.6}$ (by changing the constant part)

Preimage Attack on 3-Round SHAKE128 (2)

The degree of freedom: $64 *(10-2-4)-6=250$
The complexity is 1 .

Summary of preimage attacks on SHA-3

Target	\#Rounds	Time
SHAKE128	3	1
	4	2^{106}
SHA3-224	2	2^{33}
	3	2^{39}
SHA3-256 / SHAKE256	4	2^{207}
	2	2^{33}
	3	2^{82}
SHA3-512	3	2^{239}
	4	2^{323}
	2	2^{378}

Outline

(1) Introduction

(2) Preimage Attack
(3) Collision Attack

- Overview
- One-Round Connectors
- S-box Linearization and Connector Extensions

Security Requirements

Collision

$$
2^{\mathrm{n} / 2}
$$

Overview

$\left(n_{r_{1}}+n_{r_{2}}\right)$-round collision attacks

- $n_{r_{2}}$-round differential: $\Delta S_{I} \rightarrow \Delta S_{O}$
- $n_{r_{1}}$-round connector: A certain procedure which produces message pairs $\left(M_{1}, M_{2}\right)$ such that

$$
\mathrm{R}^{n_{r_{1}}}\left(\overline{M_{1}} \| 0^{c}\right)+\mathrm{R}^{n_{r_{1}}}\left(\overline{M_{2}} \| 0^{c}\right)=\Delta S_{I}, \quad\left(\mathrm{R}^{i}: i \text { iterations of } \mathrm{R}\right)
$$

Overview

$\left(n_{r_{1}}+n_{r_{2}}\right)$-round collision attacks

- Two stages:
- Connecting stage.
\star Construct an $n_{r_{1}}$-round connector and get a subspace of messages bypassing the first $n_{r_{1}}$ rounds.
- Brute-force searching stage.
\star Find a colliding pair following the $n_{r_{2}}$-round differential trail from the subspace by brute force.
(2)

Brute-force searching stage with complexity 2^{w}

(1) Connecting stage

1-round connector by Dinur et al.

Collision attacks on 4-round Kесcaк-224/256 (FSE 2012)

- 1-round connector + 3-round differential trail

Properties of Keccak S-box

Property 1. Given $\left(\delta^{\text {in }}, \delta^{o u t}\right), V=\left\{x: S(x)+\mathrm{S}\left(x+\delta^{\text {in }}\right)=\delta^{\text {out }}\right\}$ is an affine subspace.

Example

Let $\left(\delta^{\text {in }}, \delta^{\text {out }}\right)=(01,01)$, then $\operatorname{DDT}(01,01)=8$ and $V=\{10,11,14$, $15,18,19,1 \mathrm{C}, 1 \mathrm{D}\}$ is a 3 -dimensional affine subspace, defined by

$$
\left\{\begin{array}{l}
x_{1}=0, \\
x_{4}=1 .
\end{array}\right.
$$

1-round connector by Dinur et al.

Property 2. Given $\delta^{\text {out }}, T=\left\{\delta^{\text {in }}: \operatorname{DDT}\left(\delta^{\text {in }}, \delta^{\text {out }}\right)>0\right\}$ contains at least five 2-dimensional affine subspaces.

Example

Suppose $\delta^{\text {out }}=01$. Then, $T=\{01,09,0 \mathrm{~B}, 11,15,19,1 \mathrm{~B}, 1 \mathrm{D}, 1 \mathrm{~F}\}$. Among T there are nine 2 -dimensional affine subspaces.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\delta_{0}^{i n}=1 \\
\delta_{1}^{i n}=0 \\
\delta_{2}^{i n}=0
\end{array} \quad \leftrightarrow T_{0}=\{01,09,11,19\}\right. \\
& \left\{\begin{array}{r}
\delta_{0}^{i n}=1 \\
\delta_{1}^{i n}=0 \\
\delta_{2}^{i n}+\delta_{4}^{i n}=0
\end{array} \leftrightarrow T_{1}=\{01,09,15,1 D\} \quad\left\{\begin{array}{r}
\delta_{0}^{i n}=1 \\
\delta_{3}^{i n}=1 \\
\delta_{4}^{i n}=1
\end{array} \leftrightarrow T_{8}=\{19,1 B, 1 D, 1 F\}\right.\right.
\end{aligned}
$$

1-round connector

$$
\left.\begin{array}{ccc}
\alpha_{0} & & \beta_{0} \\
\\
& & \alpha_{1}\left(\Delta S_{I}\right) \\
c \uparrow \mid & L & \\
& & x
\end{array} \right\rvert\, \begin{aligned}
& \chi \\
&
\end{aligned}
$$

- Choose β_{0} s.t. $\operatorname{Pr}\left(\beta_{0} \rightarrow \alpha_{1}\right)>0$.
- Derive the solution set V for x.
- For $x \in V$,

$$
\chi(x)+\chi\left(x+\beta_{0}\right)=\alpha_{1}
$$

always holds.
${ }^{1} p$ denotes the minimal number of fixed padding bit(s).

1-round connector

- Choose β_{0} s.t. $\operatorname{Pr}\left(\beta_{0} \rightarrow \alpha_{1}\right)>0$.
- Derive the solution set V for x.
- For $x \in V$,

$$
\chi(x)+\chi\left(x+\beta_{0}\right)=\alpha_{1}
$$

always holds.

How about the $(c+p)$-bit ${ }^{1}$ initial constraints?
${ }^{1} p$ denotes the minimal number of fixed padding bit(s).

1-round connector by Dinur et al.

The target difference algorithm

$$
\left.\left.\left.\right|_{c \uparrow} ^{\alpha_{0}} \quad L \quad\right|_{x} ^{\beta_{0}}\right|_{x} \alpha_{1}\left(\Delta S_{I}\right)
$$

- Difference phase: find a subspace of input difference β_{0} to χ
- Choose an affine subspace of input differences for each active S-box (using Property 2).
- These $\beta_{0} \mathrm{~S}$ should be compatible with the last $(c+p)$-bit initial difference.
- Value phase: by fixing β_{0}, obtain a subspace of input values to χ that lead to the target difference ΔS_{I} (using Property l)
- These input values should be compatible with the last $(c+p)$-bit initial value.

Example

$$
\begin{array}{ccc}
? & x \xrightarrow{\text { S-box }} & y \\
? & \delta^{\text {in }} & \xrightarrow{\text { S-box }} \\
\delta^{\text {out }}=01
\end{array}
$$

Example

$$
\begin{array}{ccc}
? & x \xrightarrow{\text { S-box }} & y \\
? & \delta^{\text {in }} \xrightarrow{\text { S-box }} & \delta^{\text {out }}=01
\end{array}
$$

Initialization:

E_{Δ} : over β_{0}, initialized with $c+p$ equations concerning the initial difference;
E_{M} : over x, initialized with $c+p$ equations concerning the initial value.

Example

$$
\begin{array}{ccc}
? & x \xrightarrow{\text { S-box }} & y \\
? & \delta^{\text {in }} \xrightarrow{\text { S-box }} & \delta^{\text {out }}=01
\end{array}
$$

Initialization:

E_{Δ} : over β_{0}, initialized with $c+p$ equations concerning the initial difference;
E_{M} : over x, initialized with $c+p$ equations concerning the initial value.
Difference phase: Choose a subspace for $\delta^{i n}$ from $T=\{01,09,0 \mathrm{~B}, 11,15,19,1 \mathrm{~B}$, 1D, 1F \}.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\delta_{0}^{i n}=1 \\
\delta_{1}^{i n}=0 \\
\delta_{2}^{i n}=0
\end{array} \quad \leftrightarrow T_{0}=\{01,09,11,19\}\right. \\
& \left\{\begin{array}{r}
\delta_{0}^{\text {in }}=1 \\
\delta_{1}^{i_{1}}=0 \\
\delta_{2}^{\text {in }}+\delta_{4}=0
\end{array} \leftrightarrow T_{1}=\{01,09,15,1 D\} \quad\left\{\begin{array}{r}
\delta_{0}^{\text {in }}=1 \\
\delta_{3}^{i n}=1 \\
\delta_{4}^{\text {in }}=1
\end{array} \leftrightarrow T_{8}=\{19,1 B, 1 D, 1 F\}\right.\right.
\end{aligned}
$$

Suppose T_{0} is compatible with E_{Δ} and is chosen by adding it to E_{Δ}.

Example

Value phase: From T_{0}, choose an exact value for $\delta^{i n}$. Suppose 01 is chosen. This means
(1)

$$
\left\{\begin{array}{l}
\delta_{3}^{i n}=0 \\
\delta_{4}^{i n}=0
\end{array}\right.
$$

is compatible with E_{Δ} and added to E_{Δ}.

Example

Value phase: From T_{0}, choose an exact value for $\delta^{i n}$.
Suppose 01 is chosen. This means
(1)

$$
\left\{\begin{array}{l}
\delta_{3}^{i n}=0 \\
\delta_{4}^{i n}=0
\end{array}\right.
$$

is compatible with E_{Δ} and added to E_{Δ}.
(2)

$$
\left\{\begin{array}{l}
x_{1}=0 \\
x_{4}=1
\end{array}\right.
$$

is compatible with E_{M} and added to E_{M}. It constrains x to

$$
V=\{10,11,14,15,18,19,1 C, 1 D\}
$$

With $x \in V, \operatorname{Pr}(01 \rightarrow 01)=1$ for this S-box.

Summary of the 1 -Round Connector

- Without the initial E_{M} and E_{Δ}, these two phases always succeed.
- The greater the capacity c is, the more difficult it is for the algorithm to succeed.
- Construct a connector by processing linear equations.

2-Round Connectors

Extending the 1-round connector

1-round connector

2-Round Connectors

Extending the 1-round connector

(Partially) linearize the first round.

S-box linearization

Linearizable subspaces

Definition (Linearizable subspaces)

Given an S-box $S(\cdot)$, linearizable subspaces are input subspaces V, for which $\exists A, b$, s.t. $\forall x \in V, \mathrm{~S}(x)=A \cdot x+b$.

Example

For an input subspace $V=\{0,1,4,5\}$ which is defined by $\left\{x_{1}=0, x_{3}=0, x_{4}=0\right\}$, the S-box is equivalent to the linear transformation

$$
y=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \cdot x .
$$

S-box linearization

Linearizable subspaces

- The largest linearizable subspace is of dimension 2.
- There are totally 80 2-dimensional linearizable affine subspaces.

Table: Linearizable affine subspaces of Кессак S-box

$\{0,1,4,5\}$	$\{2,3,6,7\}$	$\{0,1,8,9\}$	$\{4,5,8,9\}$
\{1, 2, 9, A\}	$\{0,3,8, B\}$	$\{1,3,9, B\}$	$\{2,3, A, B\}$
$\{0,1, C, D\}$	$\{4,5, C, D\}$	$\{8,9, \mathrm{C}, \mathrm{D}\}$	$\{4,6, C, E\}$
$\{4,7, C, F\}$	$\{5,7, \mathrm{D}, \mathrm{F}\}$	$\{2,3, E, F\}$	$\{6,7, E, F\}$
\{0, 2, 10, 12\}	\{8, A, 10, 12\}	$\{1,3,11,13\}$	$\{9, \mathrm{~B}, 11,13\}$
$\{1,5,10,14\}$	$\{2,4,12,14\}$	\{0, 4, 11, 15\}	$\{1,5,11,15\}$
$\{10,11,14,15\}$	$\{0,6,10,16\}$	$\{2,6,12,16\}$	$\{3,7,12,16\}$
\{C, E, 14, 16\}	$\{1,7,11,17\}$	$\{2,6,13,17\}$	$\{3,7,13,17\}$
\{D, F, 15, 17\}	$\{12,13,16,17\}$	\{10, 11, 18, 19\}	$\{14,15,18,19\}$
$\{8, \mathrm{~A}, 18,1 \mathrm{~A}\}$	\{10, 12, 18, 1A	$\{11,12,19,1 \mathrm{~A}\}$	$\{10,13,18,1 \mathrm{~B}\}$
$\{9, \mathrm{~B}, 19,1 \mathrm{~B}\}$	$\{11,13,19,1 \mathrm{~B}\}$	$\{12,13,1 \mathrm{~A}, 1 \mathrm{~B}\}$	$\{16,17,1 \mathrm{~A}, 1 \mathrm{~B}\}$
\{9, D, 18, 1C	\{A, C, 1A, 1C	\{8, C, 19, 1D\}	\{9, D, 19, 1D\}
$\{10,11,1 C, 1 D\}$	$\{14,15,1 C, 1 D\}$	$\{18,19,1 \mathrm{C}, 1 \mathrm{D}\}$	$\{8, \mathrm{E}, 18,1 \mathrm{E}\}$
\{B, F, 1A, 1E\}	\{4, 6, 1C, 1E\}	\{C, E, 1C, 1E\}	$\{14,16,1 \mathrm{C}, 1 \mathrm{E}\}$
\{9, F, 19, 1F	\{A, E, 1B, 1F\}	$\{\mathrm{B}, \mathrm{F}, 1 \mathrm{~B}, 1 \mathrm{~F}\}$	$\{14,17,1 \mathrm{C}, 1 \mathrm{~F}\}$
\{D, F, 1D, 1F\}	\{15, 17, 1D, 1F\}	$\{12,13,1 \mathrm{E}, 1 \mathrm{~F}\}$	$\{16,17,1 \mathrm{E}, 1 \mathrm{~F}\}$
$\{0,2,8, A\}$	$\{6,7, A, B\}$	$\{5,6, \mathrm{D}, \mathrm{E}\}$	$\{\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{F}\}$
$\{0,4,10,14\}$	$\{3,5,13,15\}$	$\{4,6,14,16\}$	$\{5,7,15,17\}$
$\{0,2,18,1 \mathrm{~A}\}$	$\{1,3,19,1 \mathrm{~B}\}$	$\{8, \mathrm{C}, 18,1 \mathrm{C}\}$	\{B, D, 1B, 1D\}
$\{\mathrm{A}, \mathrm{E}, 1 \mathrm{~A}, 1 \mathrm{E}\}$	$\{15,16,1 \mathrm{D}, 1 \mathrm{E}\}$	$\{5,7,1 \mathrm{D}, 1 \mathrm{~F}\}$	$\{1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{E}, 1 \mathrm{~F}\}$

S-box linearization

Linearizable Subspace and DDT

Observation

For an active Keccak S-box, $V=\left\{x: S(x)+S\left(x+\delta^{\text {in }}\right)=\delta^{\text {out }}\right\}$
(1) if $\operatorname{DDT}\left(\delta^{\text {in }}, \delta^{\text {out }}\right)=2$ or 4 , then V is a linearizable affine subspace.
(2) if $\operatorname{DDT}\left(\delta^{\text {in }}, \delta^{\text {out }}\right)=8$, then among V there are six 2-dimensional subsets $W_{i} \subset V, i=0, \cdots, 5$ such that W_{i} are linearizable affine subspaces.

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
\operatorname{DDT}(01,01)=8, V=\{10,11,14,15,18,19,1 C, 1 D\}, w_{i} \text { 's are } \\
\qquad\{10,11,14,15\},\{10,11,18,19\},\{10,11,1 C, 1 D\} \\
\{14,15,18,19\},\{14,15,1 C, 1 D\},\{18,19,1 C, 1 D\}
\end{array}
\end{aligned}
$$

Drawback of S-box Linearization

- Each 5-bit S-box allows a linearizable subspace of dimension at most 2.
- Full linearization of two rounds is impossible, since $3 / 5$ degree of freedom is lost in each round of linearization. Hence 3-round connectors are impossible.

Non-Full S-box Linearization

Two Observations - 1

Observation

For a non-active Keccak S-box, when $U_{i} \neq 1 \mathrm{~F}$,
(1) if $U_{i}=0$, it does not require any linearization;
(2) if $U_{i} \in T, T=\{01,02,04,08,10,03,06,0 C, 11,18\}$, at least 1 equation should be added to E_{M} to linearize the output bit(s) of the S-box marked by U_{i};
(3) otherwise, at least 2 equations should be added to E_{M} to linearize the output bits of the S-box marked by U_{i}.

Example

Suppose $U_{i}=1$.
Linearization of $y_{0}=x_{0}+\left(x_{1}+1\right) \cdot x_{2}$

No.	constraint	linear mapping
1	$x_{1}=0$	$y_{0}=x_{0}+x_{2}$
2	$x_{1}=1$	$y_{0}=x_{0}$
3	$x_{2}=0$	$y_{0}=x_{0}$
4	$x_{2}=1$	$y_{0}=x_{0}+x_{1}+1$
5	$x_{1}+x_{2}=0$	$y_{0}=x_{0}$
6	$x_{1}+x_{2}=1$	$y_{0}=x_{0}+x_{2}$

Non-Full S-box Linearization

Two Observations - 2

Observation

Given $\left(\delta^{\text {in }}, \delta^{\text {out }}\right)$ such that $\operatorname{DDT}\left(\delta^{\text {in }}, \delta^{\text {out }}\right)=8,4$ out of 5 output bits are already linear if the input is chosen from the solution set $V=\left\{x \mid \mathrm{S}(x)+\mathrm{S}\left(x+\delta^{\text {in }}\right)=\delta^{\text {out }}\right\}$.

Example

$\operatorname{DDT}(01,01)=8$ and $V=\{10,11,14,15,18,19,1 \mathrm{C}, 1 \mathrm{D}\}$. The algebraic expressions of the S -box are reduced to

$$
\begin{aligned}
& y_{0}=x_{0}+x_{2} \\
& y_{1}=\left(x_{2}+1\right) \cdot x_{3} \\
& y_{2}=x_{2}+x_{3}+1, \\
& y_{3}=x_{3} \\
& y_{4}=1
\end{aligned}
$$

Non-Full S-box Linearization

Table: \#equations added to E_{M} to partially linearize an S-box

non-active		active	
U_{i}	\#equations	DDT	\#equations
1 F	3	2	4
0	0	4	3
T	1	8	2,3
others	2		

- Less degrees of freedom are consumed for non-full S-box linearizations.

Timings for Practical Collision Attacks

Table: Collision attacks using 2-/3-round connectors

Target $[r, c, d]$	n_{r}	Searching Complexity	Searching Time	Connecting Time
KECCAK[1440,160,160]	5	2^{40}	2.48 h	9.6 s
	6	$2^{51.14}$	$\mathbf{1 1 2 h}^{\dagger}$	$4.5 \mathrm{~h}^{\ddagger}$
KECCAK[640,160,160]	5	2^{35}	2.67 h	30 m
SHAKE128	5	2^{39}	30 m	25 m
SHA3-224	5	$2^{36.7}$	29 h	11.7 h
SHA3-256	5	$2^{36.7}$	45.6 h	428.8 h

\dagger Use the GPU implementation: 3 GTX970 GPUs for Keccak[1440,160,160] and 1 GTX1070 GPU for SHA3-224.
\$ For constructing the 2-round connector.

Summary of Collision Attacks

Target $[r, c, d]$	n_{r}	Complexity
Keccak[1024]	3	Practical
Keccak[768]	3	Practical
Keccak[768]	4	2^{147}
Keccak[512]	5	Practical
Keccak[448]	5	Practical
SHA3-256	5	Practical
SHA3-224	5	Practical
SHAKE128	5	Practical
Keccak[1440, 160, 160]	6	Practical
Keccak[640, 160, 160]	5	Practical
Keccak[240, 160,160]	4	Practical
Keccak[40, 160, 160]	1	Practical
Keccak[40, 160, 160]	2	2^{73}

Outline

(1) Introduction

(2) Preimage Attack

3 Collision Attack

(4) Summary

Summary

- Linearization is widely used in both collision and preimage attacks.
- Using GPU
- Searching good differential trails
- Solving systems of linear equations
- Main results
- Preimages can be found for up to 4 (out of 24) rounds.
- Collisions can be found for up to 6 (out of 24) rounds.
- Require new ways of exploiting degrees of freedom.

Thank you for your attention! Q \& A

