Cryptanalysis of Keccak

Ling Song

8 May 2021

Outlines

- 2 Preimage Attack
- 3 Collision Attack

Outline

Introduction

• Description of SHA-3 (KECCAK)

2 Preimage Attack

3 Collision Attack

NIST Standards of Secure Hash Algorithm

The sponge construction [BDPV11]

- *b*-bit permutation *f*
- Two parameters: bitrate r, capacity c, and b = r + c.
- The message is padded and then split into *r*-bit blocks.

Instances of KECCAK and SHA-3

Based on the Sponge construction with a permutation called Keccak-*f* (Keccak-p):

- KECCAK versions
 - Keccak[c], c = 2d, d = 224/256/384/512.
- SHA-3 versions
 - ▶ SHA3-*n*, *n* =224/256/384/512 and *c* = 2*n*, *d* = *n*.
 - SHAKEn (eXtendable Output Functions, XOFs)
 - $\star (SHAKE = SHA + KEccak)$
 - ★ $n = \frac{128}{256}, c = 2n, d \le 2n.$
- Instances of KECCAK challenge
 - KECCAK $[r, c, n_r, d]$ where d is the digest size, and n_r is the number of rounds.
 - For the category of collision challenges, d = c = 160.

KECCAK-f permutation

- 1600 bits: seen as a 5 × 5 array of 64-bit lanes, A[x,y], 0 ≤ x, y < 5
- 24 rounds
- each round *R* consists of five steps:

 $R = \iota \circ \boldsymbol{\chi} \circ \pi \circ \rho \circ \theta$

χ: the only nonlinear operation,
 a 5-bit Sbox applies to each row.

http://www.iacr.org/authors/tikz/

KECCAK permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 θ step: adding two columns to the current bit

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus$$
$$A[x, 3] \oplus A[x, 4]$$
$$D[x] = C[x - 1] \oplus (C[x + 1] \lll 1)$$
$$A[x, y] = A[x, y] \oplus D[x]$$

http://keccak.noekeon.org/

• The Column Parity kernel

• If $C[x] = 0, 0 \le x < 5$, then the state A is in the CP kernel.

Keccak permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 ρ step: lane level rotations, $A[x, y] = A[x, y] \ll r[x, y]$

http://keccak.noekeon.org/

Rotation onsets $r[x, y]$					
	x = 0	x = 1	x = 2	x = 3	x = 4
y = 0	0	1	62	28	27
y = 1	36	44	6	55	20
y = 2	3	10	43	25	39
y = 3	41	45	15	21	8
y = 4	18	2	61	56	14

Rotation offsets r[x, y]

KECCAK permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 π step: permutation on lanes

$$A[y, 2 * x + 3 * y] = A[x, y]$$

Keccak permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 χ step: 5-bit S-boxes, nonlinear operation on rows

$$y_0 = x_0 + (x_1 + 1) \cdot x_2,$$

$$y_1 = x_1 + (x_2 + 1) \cdot x_3,$$

$$y_2 = x_2 + (x_3 + 1) \cdot x_4,$$

$$y_3 = x_3 + (x_4 + 1) \cdot x_0,$$

$$y_4 = x_4 + (x_0 + 1) \cdot x_1.$$

KECCAK permutation: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 ι step: adding a round constant to the state

Adding one round-dependent constant to the first "lane", to destroy the symmetry.

Without ι

- The round function would be symmetric.
- All rounds would be the same.
- Fixed points exist.
- Vulnerable to rotational attacks, slide attacks, ...

Description of SHA-3 (KECCAK)

Round function of Keccak-f

Internal state A: a 5×5 array of 64-bit lanes

$$\begin{array}{l} \theta \text{ step } C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4] \\ D[x] = C[x-1] \oplus (C[x+1] \lll 1) \\ A[x,y] = A[x,y] \oplus D[x] \\ \rho \text{ step } A[x,y] = A[x,y] \ll r[x,y] \\ & \text{- The constants } r[x,y] \text{ are the rotation offsets.} \\ \pi \text{ step } A[y,2*x+3*y] = A[x,y] \\ \chi \text{ step } A[x,y] = A[x,y] \oplus ((A[x+1,y])\&A[x+2,y]) \\ \iota \text{ step } A[0,0] = A[0,0] \oplus RC \\ & - RC[i] \text{ are the round constants.} \\ \pi \circ \rho \circ \theta \end{array}$$

The only non-linear operation is χ step.

 $L \triangleq$

Outline

Introduction

2 Preimage Attack

- Properties of χ and θ
- Linear Structure

3 Collision Attack

4 Summary

Security Requirements

Preimage

Preimage Attack: Strategy

- Simplest case: Given a *d*-bit digest, find an *r*-bit message block *M*₁.
- Padding and *c* bits capacity are out of control
- Permutation *f* is reduced

The expression of $b = \chi(a)$ is of algebraic degree 2: $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

The expression of $b = \chi(a)$ is of algebraic degree 2: $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

The expression of $b = \chi(a)$ is of algebraic degree 2:

 $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

The expression of $b = \chi(a)$ is of algebraic degree 2:

 $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

How to keep χ^{-1} linear

 $a = \chi^{-1}(b)$ is of algebraic degree 3: $a_i = b_i \oplus \overline{b_{i+1}} \cdot (b_{i+2} \oplus \overline{b_{i+3}} \cdot b_{i+4})$

Our Setting

keep $y_3 = 0$, $y_4 = 1$, and y_1 constant, then χ^{-1} becomes linear.

How to keep χ^{-1} linear

 $a = \chi^{-1}(b)$ is of algebraic degree 3: $a_i = b_i \oplus \overline{b_{i+1}} \cdot (b_{i+2} \oplus \overline{b_{i+3}} \cdot b_{i+4})$

Our Setting

keep $y_3 = 0$, $y_4 = 1$, and y_1 constant, then χ^{-1} becomes linear.

Properties of θ

Definition of θ operation:

$$\begin{split} C[x] &= A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4] \\ D[x] &= C[x-1] \oplus (C[x+1] \lll 1) \\ A[x,y] &= A[x,y] \oplus D[x] \end{split}$$

Properties of θ

Definition of θ operation:

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4]$$

$$D[x] = C[x - 1] \oplus (C[x + 1] \lll 1)$$

$$A[x, y] = A[x, y] \oplus D[x]$$

Properties:

When C[x] is forced to be a constant, i.e., the sum of the all columns are kept to be constants, then θ acts the same as adding a constant.

Properties of θ

Definition of θ operation:

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4]$$

$$D[x] = C[x - 1] \oplus (C[x + 1] \lll 1)$$

$$A[x, y] = A[x, y] \oplus D[x]$$

Properties:

When C[x] is forced to be a constant, i.e., the sum of the all columns are kept to be constants, then θ acts the same as adding a constant.

When differential attack is applied, and the sum of differences of all columns are kept to be zero (C[x] = 0 for all x), then θ acts the same as identity. This special structure is called CP-kernel (Column Parity).

θ acts like identity

When the sum of all columns are constants, θ acts like identity w.r.t. the variables.

x	с	с	с	с		x + c	с	с	с	с
x + c	с	с	с	с	0	x + c	с	с	с	с
с	с	с	с	с		с	с	с	с	с
c	с	с	с	с	\longrightarrow	с	с	с	с	с
с	с	с	с	с		с	с	с	с	с

 $\overset{\parallel}{\sum} = c$

c denotes a binary constant with value either 0 or 1.

Linear Structure

Keeping 1 + 1 rounds being linear with the degree of freedom up to 512

Linear Structure

Keeping 1 + 2 rounds being linear with the degree of freedom up to 194

Preimage Attack on 3-Round SHAKE128 (1)

64 * 2 variables, 64 * 2 quadratic equations. Solving systems of non-linear equations is hard.

Bilinear structure of χ

 χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$b_0 = a_0 \oplus \overline{a_1} \cdot a_2 \tag{1}$$

$$b_1 = a_1 \oplus \overline{a_2} \cdot a_3 \tag{2}$$

Bilinear structure of χ

 χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$b_0 = a_0 \oplus \overline{a_1} \cdot a_2 \tag{1}$$

$$b_1 = a_1 \oplus \overline{a_2} \cdot a_3 \tag{2}$$

Multiplying a_2 to both sides of (2), one obtains:

$$b_1 \cdot a_2 = (a_1 \oplus \overline{a_2} \cdot a_3) \cdot a_2 = a_1 \cdot a_2 \tag{3}$$

Bilinear structure of χ

 χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$b_0 = a_0 \oplus \overline{a_1} \cdot a_2 \tag{1}$$

$$b_1 = a_1 \oplus \overline{a_2} \cdot a_3 \tag{2}$$

Multiplying a_2 to both sides of (2), one obtains:

$$b_1 \cdot a_2 = (a_1 \oplus \overline{a_2} \cdot a_3) \cdot a_2 = a_1 \cdot a_2 \tag{3}$$

and thus according to (1) we obtain

$$\boldsymbol{b}_0 = \boldsymbol{a}_0 \oplus \overline{\boldsymbol{b}_1} \cdot \boldsymbol{a}_2 \tag{4}$$

Given two consecutive bits of the output of χ , one linear equation on the input bits can be set up.

Bilinear structure of χ

 χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

$$b_0 = a_0 \oplus \overline{a_1} \cdot a_2 \tag{1}$$

$$b_1 = a_1 \oplus \overline{a_2} \cdot a_3 \tag{2}$$

Multiplying a_2 to both sides of (2), one obtains:

$$b_1 \cdot a_2 = (a_1 \oplus \overline{a_2} \cdot a_3) \cdot a_2 = a_1 \cdot a_2 \tag{3}$$

and thus according to (1) we obtain

$$\boldsymbol{b}_0 = \boldsymbol{a}_0 \oplus \overline{\boldsymbol{b}_1} \cdot \boldsymbol{a}_2 \tag{4}$$

Given two consecutive bits of the output of χ , one linear equation on the input bits can be set up.

Preimage attack on 3-round SHAKE128 64 * 2 variables, 64 linear equations. Setting up more linear equations χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

Setting 1

Guess $a_{i+1} = 0$ or 1, then b_i becomes linear.

Setting up more linear equations χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

Setting 1

Guess $a_{i+1} = 0$ or 1, then b_i becomes linear.

Setting 2

 $b_i = a_i$ holds with probability 0.75 when input bit a_j is uniformly distributed, for all $i \in \{0, ..., 4\}$.

Setting up more linear equations χ : $b_i = a_i \oplus \overline{a_{i+1}} \cdot a_{i+2}$, and specially we have

Setting 1

Guess $a_{i+1} = 0$ or 1, then b_i becomes linear.

Setting 2

 $b_i = a_i$ holds with probability 0.75 when input bit a_j is uniformly distributed, for all $i \in \{0, ..., 4\}$.

Preimage attack on 3-round SHAKE128

Setting 1 64 * 2 variables, 64 + 32 + 32 linear equations (guess 32 bits), complexity 2^{32}

Setting 2 64 * 2 variables, 64 + 64 linear equations, complexity $\frac{1}{0.75^{64}} = 2^{26.6}$ (by changing the constant part)

Preimage Attack on 3-Round SHAKE128 (2)

The degree of freedom: 64 * (10 - 2 - 4) - 6 = 250The complexity is 1.

Line	C.	ana
டயத	, O	ong

Summary of preimage attacks on SHA-3

Target	#Rounds	Time
CUARE120	3	1
SHAREIZO	4	2^{106}
	2	2^{33}
SHA3-224	3	2^{39}
	4	2^{207}
	2	2^{33}
SHA3-256 / SHAKE256	3	2^{82}
	4	2^{239}
CIIZ 2 284	3	2^{323}
SHAJ-304	4	2^{378}
	2	2^{256}
SHA3-512	3	2^{482}
	4	2^{506}

Outline

Introduction

2 Preimage Attack

3 Collision Attack

- Overview
- One-Round Connectors
- S-box Linearization and Connector Extensions

4 Summary

Security Requirements

Overview

 $(n_{r_1} + n_{r_2})$ -round collision attacks

- n_{r_2} -round differential: $\Delta S_I \rightarrow \Delta S_O$
- n_{r_1} -round connector: A certain procedure which produces message pairs (M_1, M_2) such that

$$\mathbb{R}^{n_{r_1}}(\overline{M_1}||0^c) + \mathbb{R}^{n_{r_1}}(\overline{M_2}||0^c) = \Delta S_I, \quad (\mathbb{R}^i : i \text{ iterations of } \mathbb{R})$$

Overview

 $(n_{r_1} + n_{r_2})$ -round collision attacks

- Two stages:
 - Connecting stage.
 - * Construct an n_{r_1} -round connector and get a subspace of messages bypassing the first n_{r_1} rounds.
 - Brute-force searching stage.
 - * Find a colliding pair following the n_{r_2} -round differential trail from the subspace by brute force.

1-round connector by Dinur et al.

Collision attacks on 4-round Keccak-224/256 (FSE 2012)

• 1-round connector + 3-round differential trail

Properties of KECCAK S-box

Property 1. Given $(\delta^{in}, \delta^{out})$, $V = \{x : S(x) + S(x + \delta^{in}) = \delta^{out}\}$ is an affine subspace.

Example

Let $(\delta^{in}, \delta^{out}) = (01, 01)$, then DDT(01, 01) = 8 and $V = \{10, 11, 14, 15, 18, 19, 1C, 1D\}$ is a 3-dimensional affine subspace, defined by

$$\begin{cases} x_1 = 0, \\ x_4 = 1. \end{cases}$$

1-round connector by Dinur et al.

Property 2. Given δ^{out} , $T = {\delta^{in} : DDT(\delta^{in}, \delta^{out}) > 0}$ contains at least five 2-dimensional affine subspaces.

Example

Suppose $\delta^{out} = 01$. Then, $T = \{01, 09, 0B, 11, 15, 19, 1B, 1D, 1F\}$. Among *T* there are nine 2-dimensional affine subspaces.

$$\begin{cases} \delta_{1}^{in} = 1 \\ \delta_{1}^{in} = 0 \\ \delta_{2}^{in} = 0 \end{cases} \leftrightarrow T_{0} = \{01, 09, 11, 19\} \\ \vdots \\ \begin{cases} \delta_{2}^{in} = 0 \\ \delta_{1}^{in} = 0 \\ \delta_{2}^{in} + \delta_{4}^{in} = 0 \end{cases} \Rightarrow T_{1} = \{01, 09, 15, 1D\} \\ \begin{cases} \delta_{0}^{in} = 1 \\ \delta_{3}^{in} = 1 \\ \delta_{4}^{in} = 1 \end{cases} \leftrightarrow T_{8} = \{19, 1B, 1D, 1F\} \end{cases}$$

1-round connector

- Choose β_0 s.t. $\Pr(\beta_0 \to \alpha_1) > 0$.
- Derive the solution set *V* for *x*.
- For $x \in V$,

$$\chi(\mathbf{x}) + \chi(\mathbf{x} + \beta_0) = \alpha_1$$

always holds.

 ^{1}p denotes the minimal number of fixed padding bit(s).

Ling Song

Cryptanalysis of KECCAI

1-round connector

$$\begin{array}{c|c} \alpha_0 & \beta_0 & \alpha_1 (\Delta S_I) \\ & & \\ c \uparrow & & \\ & &$$

- Choose β_0 s.t. $\Pr(\beta_0 \to \alpha_1) > 0$.
- Derive the solution set *V* for *x*.
- For $x \in V$,

$$\chi(x) + \chi(x + \beta_0) = \alpha_1$$

always holds.

How about the (c + p)-bit¹initial constraints?

Ling Song

 $^{^{1}}p$ denotes the minimal number of fixed padding bit(s).

1-round connector by Dinur et al.

The target difference algorithm

$$\begin{array}{c|c} \alpha_0 & \beta_0 & \alpha_1 (\Delta S_I) \\ & & \\ c \diamondsuit & & \\ & &$$

• Difference phase: find a subspace of input difference β_0 to χ

- Choose an affine subspace of input differences for each active S-box (using Property 2).
- ► These β₀s should be compatible with the last (c + p)-bit initial difference.
- Value phase: by fixing β₀, obtain a subspace of input values to χ that lead to the target difference ΔS_I (using Property 1)
 - ► These input values should be compatible with the last (*c* + *p*)-bit initial value.

?
$$x \xrightarrow{\text{S-box}} y$$

? $\delta^{in} \xrightarrow{\text{S-box}} \delta^{out} = 01$

?
$$x \xrightarrow{\text{S-box}} y$$

? $\delta^{in} \xrightarrow{\text{S-box}} \delta^{out} = 01$

Initialization:

 E_{Δ} : over β_0 , initialized with c + p equations concerning the initial difference;

 E_M : over x, initialized with c + p equations concerning the initial value.

?
$$x \xrightarrow{\text{S-box}} y$$

? $\delta^{in} \xrightarrow{\text{S-box}} \delta^{out} = 0$

Initialization:

 E_{Δ} : over β_0 , initialized with c + p equations concerning the initial difference;

 E_M : over *x*, initialized with c + p equations concerning the initial value. **Difference phase**: Choose a subspace for δ^{in} from $T = \{01, 09, 0B, 11, 15, 19, 1B, 1D, 1F\}$.

$$\begin{cases} \delta_{0}^{in} = 1 \\ \delta_{1}^{in} = 0 & \leftrightarrow T_{0} = \{01, 09, 11, 19\} \\ \delta_{2}^{in} = 0 & \vdots \\ \\ \delta_{0}^{in} = 1 & \\ \delta_{1}^{in} = 0 & \leftrightarrow T_{1} = \{01, 09, 15, 1D\} \\ \delta_{2}^{in} + \delta_{4} = 0 & \\ \end{cases} \quad \begin{array}{c} \delta_{0}^{in} = 1 \\ \delta_{0}^{in} = 1 \\ \delta_{3}^{in} = 1 & \leftrightarrow T_{8} = \{19, 1B, 1D, 1F\} \\ \delta_{4}^{in} = 1 & \\ \end{array}$$

Suppose T_0 is compatible with E_{Δ} and is chosen by adding it to E_{Δ} .

Ling Song

(1)

Value phase: From T_0 , choose an exact value for δ^{in} . Suppose 01 is chosen. This means

 $\begin{cases} \delta_3^{in}=0\\ \delta_4^{in}=0 \end{cases}$

is compatible with E_{Δ} and added to E_{Δ} .

Value phase: From T_0 , choose an exact value for δ^{in} . Suppose 01 is chosen. This means

 $\begin{cases} \delta_3^{in}=0\\ \delta_4^{in}=0 \end{cases}$

is compatible with E_{Δ} and added to E_{Δ} .

(2)

(1)

$$\begin{cases} x_1 = 0\\ x_4 = 1 \end{cases}$$

is compatible with E_M and added to E_M . It constrains x to

 $V = \{10, 11, 14, 15, 18, 19, 1C, 1D\}$

With $x \in V$, $Pr(01 \rightarrow 01)=1$ for this S-box.

Summary of the 1-Round Connector

- Without the initial E_M and E_{Δ} , these two phases always succeed.
- The greater the capacity *c* is, the more difficult it is for the algorithm to succeed.
- Construct a connector by processing linear equations.

2-Round Connectors

Extending the 1-round connector

2-Round Connectors

Extending the 1-round connector

(Partially) linearize the first round.

S-box linearization

Linearizable subspaces

Definition (Linearizable subspaces)

Given an S-box $S(\cdot)$, linearizable subspaces are input subspaces V, for which $\exists A, b$, s.t. $\forall x \in V, S(x) = A \cdot x + b$.

Example

For an input subspace $V = \{0, 1, 4, 5\}$ which is defined by $\{x_1 = 0, x_3 = 0, x_4 = 0\}$, the S-box is equivalent to the linear transformation

$$y = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot x.$$

S-box linearization

Linearizable subspaces

- The largest linearizable subspace is of dimension 2.
- There are totally 80 2-dimensional linearizable affine subspaces.

Table: Linearizable affine subspaces of KECCAK S-box

<pre>{0, 1, 4, 5} {1, 2, 9, A} {0, 1, C, D} {4, 7, C, F} {0, 2, 10, 12} {1, 5, 10, 14} {10, 11, 14, 15} {C, E, 14, 16} {D, F, 15, 17} {8, A, 18, 1A} {9, D, 19, 1B} {9, D, 18, 1C} {10, 11, 1C, 1D} {B, F, 1A, 1E} {9, F, 19, 1F} {0, 2, 8, A}</pre>	<pre>{2, 3, 6, 7} {0, 3, 8, B} {4, 5, C, D} {5, 7, D, F} {8, A, 10, 12} {2, 4, 12, 14} {0, 6, 10, 16} {1, 7, 11, 17} {10, 12, 18, 1A} {11, 13, 19, 1B} {A, C, 1A, 1C, 1D} {4, 6, 1C, 1E} {A, E, 1B, 1F} {15, 17, 1D, 1F} {6, 7, A, B}</pre>	<pre>{0, 1, 8, 9} {1, 3, 9, B} {8, 9, C, D} {2, 3, E, F} {1, 3, 11, 13} {0, 4, 11, 15} {2, 6, 12, 16} {2, 6, 13, 17} {10, 11, 18, 19} {11, 12, 19, 1A} {12, 13, 1A, 1B} {8, C, 19, 1D} {18, 19, 1C, 1D} {C, E, 1C, 1E} {B, F, 1B, 1F} {12, 13, 1E, 1F} {5, 6, D, E}</pre>	<pre>{4, 5, 8, 9} {2, 3, A, B} {4, 6, C, E} {6, 7, E, F} {9, B, 11, 13} {1, 5, 11, 15} {3, 7, 12, 16} {3, 7, 13, 17} {14, 15, 18, 19} {10, 13, 18, 1B} {16, 17, 1A, 1B} {9, D, 19, 1D} {8, E, 18, 1E} {14, 16, 1C, 1E} {14, 17, 1C, 1F} {16, 17, 1E, 1F} {A, B, E, F}</pre>
{D, F, 1D, 1F} {D, F, 1D, 1F} {0, 2, 8, A}	{15, 17, 1D, 1F} {6, 7, A, B}	{12, 13, 1E, 1F} {5, 6, D, E}	$\{16, 17, 16, 1F\}$ $\{16, 17, 1E, 1F\}$ $\{A, B, E, F\}$
{0, 4, 10, 14} {0, 2, 18, 1A} {A, E, 1A, 1E}	{3, 5, 13, 15} {1, 3, 19, 1B} {15, 16, 1D, 1E}	{4, 6, 14, 16} {8, C, 18, 1C} {5, 7, 1D, 1F}	<pre>{5, 7, 15, 17} {B, D, 1B, 1D} {1A, 1B, 1E, 1F}</pre>

S-box linearization

Linearizable Subspace and DDT

Observation

For an active KECCAK S-box, $V = \{x : S(x) + S(x + \delta^{in}) = \delta^{out}\}$

if DDT(δⁱⁿ, δ^{out}) = 2 or 4, then V is a linearizable affine subspace.
 if DDT(δⁱⁿ, δ^{out}) = 8, then among V there are six 2-dimensional subsets W_i ⊂ V, i = 0, · · · , 5 such that W_i are linearizable affine subspaces.

Example

 $DDT(01, 01) = 8, V = \{10, 11, 14, 15, 18, 19, 1C, 1D\}, w_i$'s are

$$\begin{split} &\{10,11,14,15\}, \{10,11,18,19\}, \{10,11,1C,1D\}, \\ &\{14,15,18,19\}, \{14,15,1C,1D\}, \{18,19,1C,1D\}. \end{split}$$

Drawback of S-box Linearization

- Each 5-bit S-box allows a linearizable subspace of dimension at most 2.
- Full linearization of two rounds is impossible, since 3/5 degree of freedom is lost in each round of linearization. Hence 3-round connectors are impossible.

Non-Full S-box Linearization

Two Observations - 1

Observation

For a non-active Keccak S-box, when $U_i \neq 1$ F,

- *if* $U_i = 0$, *it does not require any linearization;*
- if $U_i \in T$, $T = \{01, 02, 04, 08, 10, 03, 06, 0C, 11, 18\}$, at least 1 equation should be added to E_M to linearize the output bit(s) of the S-box marked by U_i ;
- otherwise, at least 2 equations should be added to E_M to linearize the output bits of the S-box marked by U_i.

Suppose $U_i = 1$.

• .•

÷ •

Linearization of $y_0 = x_0 + (x_1 + 1) \cdot x$					
No.	constraint	linear mapping			
1	$x_1 = 0$	$y_0 = x_0 + x_2$			
2	$x_1 = 1$	$y_0 = x_0$			
3	$x_2 = 0$	$y_0 = x_0$			
4	$x_2 = 1$	$y_0 = x_0 + x_1 + 1$			
5	$x_1 + x_2 = 0$	$y_0 = x_0$			
6	$x_1 + x_2 = 1$	$y_0 = x_0 + x_2$			

c

. /

. 1)

Non-Full S-box Linearization

Two Observations - 2

Observation

Given $(\delta^{in}, \delta^{out})$ such that $DDT(\delta^{in}, \delta^{out}) = 8$, 4 out of 5 output bits are already linear if the input is chosen from the solution set $V = \{x \mid S(x) + S(x + \delta^{in}) = \delta^{out}\}.$

Example

DDT(01, 01) = 8 and $V = \{10, 11, 14, 15, 18, 19, 1C, 1D\}$. The algebraic expressions of the S-box are reduced to

$$y_0 = x_0 + x_2,$$

$$y_1 = (x_2 + 1) \cdot x_3,$$

$$y_2 = x_2 + x_3 + 1,$$

$$y_3 = x_3,$$

$$y_4 = 1.$$

Non-Full S-box Linearization

Table: #equations added to E_M to partially linearize an S-box

non-active		active		
U_i	#equations	DDT	#equations	
1F	3	2	4	
0	0	4	3	
T	1	8	2,3	
others	2			

• Less degrees of freedom are consumed for non-full S-box linearizations.

Timings for Practical Collision Attacks

Table: Collision attacks	using 2-/3-round connectors
--------------------------	-----------------------------

Target [r. c. d]	10	Searching	Searching	Connecting	
Target $[r, c, a]$	n_r	Complexity	Time	Time	
KECCAR[1440,160,160]	5	2^{40}	2.48h	9.6s	
KECCAK[1440,100,100]	6	$2^{51.14}$ 112h [†] 4.		4.5h [‡]	
Keccak[640,160,160]	5	2^{35}	2.67h	30m	
SHAKE128	5	2^{39}	30m	25m	
SHA3-224	5	$2^{36.7}$	29h	11.7h	
SHA3-256	5	$2^{36.7}$	45.6h	428.8h	

[†] Use the GPU implementation: 3 GTX970 GPUs for KECCAK[1440,160,160] and 1 GTX1070 GPU for SHA3-224.

[‡] For constructing the 2-round connector.

Summary of Collision Attacks

Target[r, c, d]	n_r	Complexity
Keccak[1024]	3	Practical
Keccak[768]	3	Practical
Keccak[768]	4	2^{147}
Keccak[512]	5	Practical
Keccak[448]	5	Practical
SHA3-256	5	Practical
SHA3-224	5	Practical
SHAKE128	5	Practical
Keccak[1440, 160, 160]	6	Practical
Keccak[640, 160, 160]	5	Practical
Keccak[240, 160, 160]	4	Practical
Keccak[40, 160, 160]	1	Practical
Keccak[40, 160, 160]	2	2^{73}

Outline

1 Introduction

- 2 Preimage Attack
- 3 Collision Attack

Summary

- Linearization is widely used in both collision and preimage attacks.
- Using GPU
 - Searching good differential trails
 - Solving systems of linear equations
- Main results
 - Preimages can be found for up to 4 (out of 24) rounds.
 - Collisions can be found for up to 6 (out of 24) rounds.
- Require new ways of exploiting degrees of freedom.

Thank you for your attention! Q & A