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NTRU

o NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trii)
o A public key cryptosystem [HPS98] invented in early 1996 by

Silverman
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Definition
The ring of convolution polynomials modulo g of rank N is the quotient
ring

Z,[x]

CHE R

1a.k.a. N-th truncated polynomial ring




The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
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Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.

o Addition of polynomials correspond to the usual addition of
vectors,

a(x) + b(x) S (ao + bo, a; 4 bl,az 4P b2, N A bN—l)'




Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.

o Addition of polynomials correspond to the usual addition of
vectors,

a(x) + b(x) S (ao + bo, a; 4 bl’ a, 4P b2, N A bN—l)'

o Multiply two polynomials mod xN — 1, i.e., replace x* with
xk mod N.

N-1
c=axb, ¢= Z a;b;_;
j=0




Example
Let N =3 and a(x) = 1 + 3x + x?, and b(x) = —4 + x + 2x%. Then
a(x) + b(x) =(1 —4) + B + Dx + (1 +2)x? = =3 + 4x + 3x>
a(x) x b(x) =—4 — e T T T
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e
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Example
Let N =3 and a(x) = 1 + 3x + x?, and b(x) = —4 + x + 2x%. Then
a(x) + b(x) =(1 —4) + B + Dx + (1 +2)x? = =3 + 4x + 3x>
a(x) x b(x) =—4 — e T T T
=—4—11x+x>+7+2x
Z[x]
e
Z,[x]
(x3-1)

=3-9x+x*€R=

=3+5x+x*€ R, =

by by by —4
axb= [aO a az] b2 bO bl = [1 3 1] 2
i

=9 1]

A polynomial multiplication takes N2 multiplications.




Convolution Polynomial Rings in Sage |

Z[x]

o Generate R = T

WHs

ZX .<X> = PolynomialRing(ZZ)

R.<x> = ZX.quotient(X"N - 1); R

Univariate Quotient Polynomial Ring X over
Integer Ring with modulus X°7 - 1

Z,[x]
(=1t}

Generate R; =

N, q =7, 3

ZqX .<X> = PolynomialRing(Zmod(q))

Rq.<x> = ZgX.quotient (XN - 1); Rq

Univariate Quotient Polynomial Ring X over
Ring of integers modulo 3 with modulus X°7 + 2




Convolution Polynomial Rings in Sage Il

o Choose two elements at random from R, and multiply them:

I, =] [Rq.random_element () ol (2)1

( , (£, g))

« , f*xg)
(f, g) = (2%¥x"6 + 2*x~4 + x~3, 2%x"6 + x"2 + 2%x)
f¥g = 2*%x°6 + 2%x~4 + x°3 + 2%x°2 + 2*x + 1

Z3(X]
(X7-1)

into Z5[X]

(f.parent ())
Univariate Quotient Polynomial Ring X over
Ring of integers modulo 3 with modulus X°7 + 2

= £.1ift ()
(f.parent ())
Univariate Polynomial Ring X over
Ring of integers modulo 3




Multiplicative Inverse |

f(x) € R, has a multiplicative inverse if and only if

elGioa st R

If so, then the inverse f(x)~! € R, can be computed using the extended

Euclidean algorithm to find polynomials u(x), v(x) € Z [x] satisfying
F () % u(x) + (xN — 1) % v(x) = 1.

Then f~1(x) = u(x) € T




Multiplicative Inverse Il

o You can simply compute the inverse via SageMath[The21] (if it
exists!)

N, q =7, 4
Zx.<X> = zZ[]
f =X"6 - X°4 + X°3 + X2 -1
Zq.<a> = PolynomialRing (Zmod(q))
= Zq(f) # Moving f from Zx[x] into Zqlal
« , f.gcd(a"N - 1))
f_inv = f.inverse_mod(a"N - 1); f_inv(a=X)

gecd(f, a°N - 1) = 1
X°5 + 3*%X°4 + 3%xX"3 + 2xX"2

Check to see if the multiplication of f * f~! =1 mod ¢?

Zq(fxf_inv).mod(a"N - 1)

1
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Parameters: N,p,q, (p,q) =1. E.g., N =401,p=3,q = 2048

Definition (Centered modular reduction)
For an odd integer n and integers a and b, define

amodn=>if a=bmodn and _n;l <b<

For example amod 5 € {-2,—1,0,1,2}, whereas a
mod 5 € {0,1,2,3,4}.
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NTRUEncrypt

o Key-Generation:
P Choose F(x),G(x) € Rs.t. F,G € {-1,0,1}V.
P f(x) =1+ pF(x), compute f~'(x)
P s(x) = pG(x)
Compute A(x) = f~1(x) % g(x) mod ¢
PK: h(x), SK: f(x)
o Enc:
Plaintext m € {—1,0, 1}&
Choose r € {—1,0, 1}V uniformly at random
Ciphertext y = r x h+ m mod ¢

Compute a =f x y mod ¢
Compute m’ = a mod p
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o Dec:
P> Compute a=f %y mod ¢
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P Compute m’ = amod p
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i
ool
which holds with high probability. In such cases,

a=fxymodg=r*xg+fxm

m =(f xymodgq) modp=r*g+f*mmodp
=mmod p. (g=pG.f=1+pF)

Therefore, m" = m =. The ciphertext is decrypted correctly, .




How does the decryption work?

If an attacker decrypts y with a £/ where £’ # f, can she/he recover the
plaintext polynomial m?
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o Dec:
P Compute a=f’ x y mod ¢

a=f *xrxh+f xmmodqg (y=r*h+mmodyq)
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Decrypt with f/

o Dec:
P Compute a=f’ x y mod ¢

a=f *xrxh+f xmmodqg (y=r*h+mmodyq)
=f xrxflxg+f *xmmodg (h=f"1%gmodyg)

=r % mod g

P> Compute m’ = a mod p
If the following equation holds, the attacker can recover m.

a=f xymodg=f"*r*xg+f xm

where "' =’ x £71 mod ¢ Recall g = pG,f =1+ pF

f’ x m and r % g still have small coefficients, whereas f” x r *x g is
likely to have large coefficients.




Example |

Suppose N = 11,p =3 and q = 23.
Key-Generation:
o Choose F(x),G(x) € Rst. F,G € {-1,0,1}"V.
W e e 2
G FB s A e SRR e e e e e B a6
St e s L s e L B e )

G(x)=x2—xB—xT Fx8 fxt=1,
g(x) = 3x% — 3x® — 3x7 4+ 3x6 + 3x* — 3 « g(x) = pG(x)
o Compute A(x) = f~'(x) x g(x) mod g
h(x) = Tx10 = 8x% 4+ 3x3 — 10x° — 8x° — 63 — 8x% +4x+3

o PK: h(x), SK: f(x)




Example Il

Enc:

o Plaintext m € {-1,0,1}"
m(x) =x10— x5 +x3 -1

o Choose r € {—1,0,1}" uniformly at random

r(x)=x9+x7—x6—x5—x4+x2.

o Ciphertext y =r x h+ m mod ¢
e e n e L L e L e L e g
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Dec:

o Computea=fxymodg=fxrxf!xg+f*mmodg
fxy = 12x10 — 29x% + 3x7 4 23x6 + 45x> — 66x* + 67x* — 83x%+
63x —35€ R
e B e e e B e SR Bl e e s | SR

o Compute m’ = a mod p
Coefficients of a(x) all lie in the interval [—11, 11]. Applying
mod 3 we have

(0]

m'(x) = A m(x).

o Check
rxg+fxm=—-11x19-6x8+3x"—x+3x*-2x3+9x2—6x+11 € R




Example IV

Dec with incorect secret key £/ = 1 +3(x° =x8 =x0 = x> + x3 + 1)
o Computea=f xymodg=f"*xr*xf!%xg+f xmmod g
a(x) = 8x10 +5xB +2x7 —2x6 =935 + 2x* - 2x3 + 6x2 - Tx -3 € R,

Compute m’ = a mod p

m'(x) = —x10 — x3 — x7 + x0 — x* + x3 — x # m(x).

Check

£ =f' % f~1 mod g = —7x!0—9x7 +4x2 —4x7+6x0 -7 —-3x* +3x3+
2x? - 1lx+4 € R

S b e o G b (g g e s B (5 e J e

rxg=-9x10-9x" +3x5+3x’ - 3x> + 6x2 +3x + 6

f' % 71 & r x g =24x1%+ 213x° — 87x® — 18x” + 15x8 — 51x° +

51x* — 69x3 — 138x% — 33x + 93

f”” % r % g has large coefficients compared to q/2.




Conditions for parameters

o Each of F,G,r,m have (roughly) % of their coefficients equal to
each of —1,0 and 1.
P> Related to the security of the scheme.
o g should be large compared to N.

P> To ensure the decryption is correct with high probability.
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o If attacker can determine f=! or g, from h, she gets the private key.
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o Lattice reduction
P> Same problem that breaks the knapsack!

o If attacker can determine f=! or g, from h, she gets the private key.

The NTRU Key Recovery Problem[HPSS08]

Given h(x), find ternary polynomials f(x) and g(x) satisfying
f(x) % h(x) = g(x) mod g where coefficients of f(x) and g(x) lie in
{_ps 0’p}
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What is the hard math problem behind NTRU?

o Recalh=f"1xg mod ¢
o Equivalently, f xh =g mod g. l.e., there exists some integer
vector t such that
fxh-g=qt

hO hN—l hN—Z hl

hl hO hN—l h2 M= <IN><N HNxN)
: : Onun  9Inxn

hyo1 hnoy hys - R
So (f,—tYM = (f, g).
o Let L be the lattice spanned by column vectors of M. Then

f.gel
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However, a vector of length 2N whose coordinates take on random
values in [—q/2, q/2] would have norm approximately equal to

q\V/ N /6,

which is much larger (recall g = 2048).
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The norm of vector (f, g)

(e]
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Each of F, G have (roughly) % of their coefficients equal to each of
—1,0 and 1.

Each of f, g have (roughly) % of their coefficients equal to each of
—-p,0and p. <« f(x) =1+ pF(x),g(x)=pG(x)

The norm of (f, g) is approximately

\/4Np?/3 =2V/3N when p =3.

However, a vector of length 2N whose coordinates take on random
values in [—q/2, q/2] would have norm approximately equal to

q\V/ N /6,

which is much larger (recall g = 2048).

o It seems that (f, g) is the shortest vector in the lattice L.
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NTRU and SVP

o There is no proof that breaking NTRUEncrypt is as hard as solving
the Shortest Vector Problem or the Closest Vector Problem.

o In 2013, Damien Stehle and Ron Steinfeld created a provably secure
version of NTRU [SS13].

o The European Union’s PQCRYPTO project (Horizon 2020

ICT-645622) is evaluating the provably secure Stehle-Steinfeld
version of NTRU as a potential European standard. However, the
Stehle-Steinfeld version of NTRU is "significantly less efficient than
the original scheme."
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How Fast is NTRUEncrypt?

The most time consuming part of encryption and decryption is the
polynomial multiplication

Each coefficient is essentially the dot product of two vectors

A polynomial multiplication of two polynomial of length N requires
N? multiplications

Hence, both encryption and decryption take O(N?) steps, where
each step is extremely fast.
Faster than RSA at equivalent cryptographic strength.
Promising PQC candidate

The National Institute of Standards and Technology wrote
in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor's Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical”.




Conclusion

A lattice-based public key cryptosystem
Its security relies on difficulty of SVP problem
Has evolved since its introduction

Considered theoretically sound

Unlike RSA and ECC, NTRU is not known to be vulnerable against
quantum computer based attack

It has been standardized (IEEE Std 1363.1, X9.98)




Thanks for your attention!

Question?
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