
Introduction to NTRU Public Key Cryptosystem†

NTRUEncrypt

Ling Song

May 30, 2021

†Credit for some slides: Hosein Hadipour

1∕29

Outline

1. Introduction

2. Convolution Polynomial Rings

3. Multiplicative Inverse

4. NTRUEncrypt

5. Security

6. Performance

7. Conclusion

2∕29

NTRU
◦ NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)

◦ A public key cryptosystem [HPS98] invented in early 1996 by

Hoffstein Pipher

Silverman

1. Introduction 3∕29

NTRU
◦ NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)
◦ A public key cryptosystem [HPS98] invented in early 1996 by

Hoffstein Pipher

Silverman
1. Introduction 3∕29

Ring of Convolution Polynomials

Definition
The ring of convolution polynomials of rank N1 is the quotient ring

R = ℤ[x]
⟨xN − 1⟩

Definition
The ring of convolution polynomials modulo q of rank N is the quotient
ring

Rq =
ℤq[x]

⟨xN − 1⟩

1a.k.a. N-th truncated polynomial ring

2. Convolution Polynomial Rings 4∕29

Ring of Convolution Polynomials

Definition
The ring of convolution polynomials of rank N1 is the quotient ring

R = ℤ[x]
⟨xN − 1⟩

Definition
The ring of convolution polynomials modulo q of rank N is the quotient
ring

Rq =
ℤq[x]

⟨xN − 1⟩

1a.k.a. N-th truncated polynomial ring

2. Convolution Polynomial Rings 4∕29

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?

◦ Every element of R has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1 =
N−1
∑

i=0
aix

i or a = (a0,⋯ , aN−1)

with the coefficients in ℤ.
◦ For every term xk, if k = r mod N , then

xk = xr.

xN = 1, xN+1 = x, ...

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕29

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1 =
N−1
∑

i=0
aix

i or a = (a0,⋯ , aN−1)

with the coefficients in ℤ.

◦ For every term xk, if k = r mod N , then

xk = xr.

xN = 1, xN+1 = x, ...

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕29

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1 =
N−1
∑

i=0
aix

i or a = (a0,⋯ , aN−1)

with the coefficients in ℤ.
◦ For every term xk, if k = r mod N , then

xk = xr.

xN = 1, xN+1 = x, ...

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕29

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1 =
N−1
∑

i=0
aix

i or a = (a0,⋯ , aN−1)

with the coefficients in ℤ.
◦ For every term xk, if k = r mod N , then

xk = xr.

xN = 1, xN+1 = x, ...

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕29

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.
◦ Addition of polynomials correspond to the usual addition of

vectors,

a(x) + b(x) ↔ (a0 + b0, a1 + b1, a2 + b2,… , aN−1 + bN−1).

◦ Multiply two polynomials mod xN − 1, i.e., replace xk with
xk mod N .

c = a ⋆ b, ci =
N−1
∑

j=0
ajbi−j

2. Convolution Polynomial Rings 6∕29

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.
◦ Addition of polynomials correspond to the usual addition of

vectors,

a(x) + b(x) ↔ (a0 + b0, a1 + b1, a2 + b2,… , aN−1 + bN−1).

◦ Multiply two polynomials mod xN − 1, i.e., replace xk with
xk mod N .

c = a ⋆ b, ci =
N−1
∑

j=0
ajbi−j

2. Convolution Polynomial Rings 6∕29

Example

Let N = 3 and a(x) = 1 + 3x + x2, and b(x) = −4 + x + 2x2. Then

a(x) + b(x) =(1 − 4) + (3 + 1)x + (1 + 2)x2 = −3 + 4x + 3x2

a(x) ⋆ b(x) = − 4 − 11x + x2 + 7x3 + 2x4

= − 4 − 11x + x2 + 7 + 2x

=3 − 9x + x2 ∈ R = ℤ[x]
⟨x3 − 1⟩

=3 + 5x + x2 ∈ R7 =
ℤ7[x]

⟨x3 − 1⟩
.

a ⋆ b = [a0 a1 a2]
⎡

⎢

⎢

⎣

b0 b1 b2
b2 b0 b1
b1 b2 b0

⎤

⎥

⎥

⎦

= [1 3 1]
⎡

⎢

⎢

⎣

−4 1 2
2 −4 1
1 2 −4

⎤

⎥

⎥

⎦

= [3 − 9 1]

A polynomial multiplication takes N2 multiplications.

2. Convolution Polynomial Rings 7∕29

Example

Let N = 3 and a(x) = 1 + 3x + x2, and b(x) = −4 + x + 2x2. Then

a(x) + b(x) =(1 − 4) + (3 + 1)x + (1 + 2)x2 = −3 + 4x + 3x2

a(x) ⋆ b(x) = − 4 − 11x + x2 + 7x3 + 2x4

= − 4 − 11x + x2 + 7 + 2x

=3 − 9x + x2 ∈ R = ℤ[x]
⟨x3 − 1⟩

=3 + 5x + x2 ∈ R7 =
ℤ7[x]

⟨x3 − 1⟩
.

a ⋆ b = [a0 a1 a2]
⎡

⎢

⎢

⎣

b0 b1 b2
b2 b0 b1
b1 b2 b0

⎤

⎥

⎥

⎦

= [1 3 1]
⎡

⎢

⎢

⎣

−4 1 2
2 −4 1
1 2 −4

⎤

⎥

⎥

⎦

= [3 − 9 1]

A polynomial multiplication takes N2 multiplications.

2. Convolution Polynomial Rings 7∕29

Example

Let N = 3 and a(x) = 1 + 3x + x2, and b(x) = −4 + x + 2x2. Then

a(x) + b(x) =(1 − 4) + (3 + 1)x + (1 + 2)x2 = −3 + 4x + 3x2

a(x) ⋆ b(x) = − 4 − 11x + x2 + 7x3 + 2x4

= − 4 − 11x + x2 + 7 + 2x

=3 − 9x + x2 ∈ R = ℤ[x]
⟨x3 − 1⟩

=3 + 5x + x2 ∈ R7 =
ℤ7[x]

⟨x3 − 1⟩
.

a ⋆ b = [a0 a1 a2]
⎡

⎢

⎢

⎣

b0 b1 b2
b2 b0 b1
b1 b2 b0

⎤

⎥

⎥

⎦

= [1 3 1]
⎡

⎢

⎢

⎣

−4 1 2
2 −4 1
1 2 −4

⎤

⎥

⎥

⎦

= [3 − 9 1]

A polynomial multiplication takes N2 multiplications.

2. Convolution Polynomial Rings 7∕29

Convolution Polynomial Rings in Sage I

◦ Generate R = ℤ[x]
⟨x7−1⟩ :

N = 7
ZX.<X> = PolynomialRing(ZZ)
R.<x> = ZX.quotient(X^N - 1); R
Univariate Quotient Polynomial Ring in x over
Integer Ring with modulus X^7 - 1

◦ Generate R3 =
ℤ3[x]
⟨x7−1⟩

N, q = 7, 3
ZqX.<X> = PolynomialRing(Zmod(q))
Rq.<x> = ZqX.quotient(X^N - 1); Rq
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X^7 + 2

2. Convolution Polynomial Rings 8∕29

Convolution Polynomial Rings in Sage II

◦ Choose two elements at random from R, and multiply them:
[f, g] = [Rq.random_element () for _ in range (2)]
print("(f, g) = ", (f, g))
print("f*g = ", f*g)
(f, g) = (2*x^6 + 2*x^4 + x^3, 2*x^6 + x^2 + 2*x)
f*g = 2*x^6 + 2*x^4 + x^3 + 2*x^2 + 2*x + 1

◦ Lift f ∈ R3 =
ℤ3[X]
⟨X7−1⟩ into ℤ3[X]

print(f.parent ())
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X^7 + 2

f = f.lift()
print(f.parent ())
Univariate Polynomial Ring in X over
Ring of integers modulo 3

2. Convolution Polynomial Rings 9∕29

Multiplicative Inverse I

f (x) ∈ Rq has a multiplicative inverse if and only if

gcd(f (x), xN − 1) = 1 ∈ ℤq[x].

If so, then the inverse f (x)−1 ∈ Rq can be computed using the extended
Euclidean algorithm to find polynomials u(x), v(x) ∈ ℤq[x] satisfying

f (x) ⋆ u(x) + (xN − 1) ⋆ v(x) = 1.

Then f−1(x) = u(x) ∈ Rq.

3. Multiplicative Inverse 10∕29

Multiplicative Inverse II

◦ You can simply compute the inverse via SageMath[The21] (if it
exists!)
reset()
N, q = 7, 4
Zx.<X> = ZZ[]
f = X^6 - X^4 + X^3 + X^2 -1
Zq.<a> = PolynomialRing(Zmod(q))
f = Zq(f) # Moving f from Zx[x] into Zq[a]
print("gcd(f, a^N - 1) = ", f.gcd(a^N - 1))
f_inv = f.inverse_mod(a^N - 1); f_inv(a=X)

gcd(f, a^N - 1) = 1
X^5 + 3*X^4 + 3*X^3 + 2*X^2

◦ Check to see if the multiplication of f ⋆ f−1 = 1 mod q?
Zq(f*f_inv).mod(a^N - 1)

1

3. Multiplicative Inverse 11∕29

NTRUEncrypt

Parameters: N, p, q, (p, q) = 1. E.g., N = 401, p = 3, q = 2048

Definition (Centered modular reduction)
For an odd integer n and integers a and b, define

a mod n = b if a ≡ b mod n and − n − 1
2

≤ b ≤ n
2
.

For example a mod 5 ∈ {−2,−1, 0, 1, 2}, whereas a
mod 5 ∈ {0, 1, 2, 3, 4}.

4. NTRUEncrypt 12∕29

NTRUEncrypt

Parameters: N, p, q, (p, q) = 1. E.g., N = 401, p = 3, q = 2048

Definition (Centered modular reduction)
For an odd integer n and integers a and b, define

a mod n = b if a ≡ b mod n and − n − 1
2

≤ b ≤ n
2
.

For example a mod 5 ∈ {−2,−1, 0, 1, 2}, whereas a
mod 5 ∈ {0, 1, 2, 3, 4}.

4. NTRUEncrypt 12∕29

NTRUEncrypt

◦ Key-Generation:
▶ Choose F (x), G(x) ∈ R s.t. F,G ∈ {−1, 0, 1}N .

▶ f (x) = 1 + pF (x), compute f−1(x)
▶ g(x) = pG(x)
▶ Compute ℎ(x) = f−1(x) ⋆ g(x) mod q
▶ PK: ℎ(x), SK: f (x)

◦ Enc:
▶ Plaintext m ∈ {−1, 0, 1}N
▶ Choose r ∈ {−1, 0, 1}N uniformly at random
▶ Ciphertext y = r ⋆ h +m mod q

◦ Dec:
▶ Compute a = f ⋆ y mod q
▶ Compute m′ = a mod p

4. NTRUEncrypt 13∕29

NTRUEncrypt

◦ Key-Generation:
▶ Choose F (x), G(x) ∈ R s.t. F,G ∈ {−1, 0, 1}N .
▶ f (x) = 1 + pF (x), compute f−1(x)
▶ g(x) = pG(x)
▶ Compute ℎ(x) = f−1(x) ⋆ g(x) mod q

▶ PK: ℎ(x), SK: f (x)
◦ Enc:

▶ Plaintext m ∈ {−1, 0, 1}N
▶ Choose r ∈ {−1, 0, 1}N uniformly at random
▶ Ciphertext y = r ⋆ h +m mod q

◦ Dec:
▶ Compute a = f ⋆ y mod q
▶ Compute m′ = a mod p

4. NTRUEncrypt 13∕29

NTRUEncrypt

◦ Key-Generation:
▶ Choose F (x), G(x) ∈ R s.t. F,G ∈ {−1, 0, 1}N .
▶ f (x) = 1 + pF (x), compute f−1(x)
▶ g(x) = pG(x)
▶ Compute ℎ(x) = f−1(x) ⋆ g(x) mod q
▶ PK: ℎ(x), SK: f (x)

◦ Enc:
▶ Plaintext m ∈ {−1, 0, 1}N
▶ Choose r ∈ {−1, 0, 1}N uniformly at random
▶ Ciphertext y = r ⋆ h +m mod q

◦ Dec:
▶ Compute a = f ⋆ y mod q
▶ Compute m′ = a mod p

4. NTRUEncrypt 13∕29

NTRUEncrypt

◦ Key-Generation:
▶ Choose F (x), G(x) ∈ R s.t. F,G ∈ {−1, 0, 1}N .
▶ f (x) = 1 + pF (x), compute f−1(x)
▶ g(x) = pG(x)
▶ Compute ℎ(x) = f−1(x) ⋆ g(x) mod q
▶ PK: ℎ(x), SK: f (x)

◦ Enc:
▶ Plaintext m ∈ {−1, 0, 1}N
▶ Choose r ∈ {−1, 0, 1}N uniformly at random
▶ Ciphertext y = r ⋆ h +m mod q

◦ Dec:
▶ Compute a = f ⋆ y mod q
▶ Compute m′ = a mod p

4. NTRUEncrypt 13∕29

NTRUEncrypt

◦ Key-Generation:
▶ Choose F (x), G(x) ∈ R s.t. F,G ∈ {−1, 0, 1}N .
▶ f (x) = 1 + pF (x), compute f−1(x)
▶ g(x) = pG(x)
▶ Compute ℎ(x) = f−1(x) ⋆ g(x) mod q
▶ PK: ℎ(x), SK: f (x)

◦ Enc:
▶ Plaintext m ∈ {−1, 0, 1}N
▶ Choose r ∈ {−1, 0, 1}N uniformly at random
▶ Ciphertext y = r ⋆ h +m mod q

◦ Dec:
▶ Compute a = f ⋆ y mod q
▶ Compute m′ = a mod p

4. NTRUEncrypt 13∕29

How does the decryption work?

◦ Dec:
▶ Compute a = f ⋆ y mod q

a = f ⋆ r ⋆ h + f ⋆m mod q (y = r ⋆ h +m mod q)

= f ⋆ r ⋆ f−1 ⋆ g + f ⋆m mod q (h = f−1 ⋆ g mod q)
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the coefficients of r ⋆ g + f ⋆m lie in the interval

[

−
q − 1
2

,
q
2

]

,

which holds with high probability. In such cases,

a = f ⋆ y mod q = r ⋆ g + f ⋆m

m′ = (f ⋆ y mod q) mod p = r ⋆ g + f ⋆m mod p
≡ m mod p. (g = pG, f = 1 + pF)

Therefore, m′ = m =. The ciphertext is decrypted correctly.

4. NTRUEncrypt 14∕29

How does the decryption work?

◦ Dec:
▶ Compute a = f ⋆ y mod q

a = f ⋆ r ⋆ h + f ⋆m mod q (y = r ⋆ h +m mod q)

= f ⋆ r ⋆ f−1 ⋆ g + f ⋆m mod q (h = f−1 ⋆ g mod q)
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the coefficients of r ⋆ g + f ⋆m lie in the interval

[

−
q − 1
2

,
q
2

]

,

which holds with high probability. In such cases,

a = f ⋆ y mod q = r ⋆ g + f ⋆m

m′ = (f ⋆ y mod q) mod p = r ⋆ g + f ⋆m mod p
≡ m mod p. (g = pG, f = 1 + pF)

Therefore, m′ = m =. The ciphertext is decrypted correctly.

4. NTRUEncrypt 14∕29

How does the decryption work?

◦ Dec:
▶ Compute a = f ⋆ y mod q

a = f ⋆ r ⋆ h + f ⋆m mod q (y = r ⋆ h +m mod q)

= f ⋆ r ⋆ f−1 ⋆ g + f ⋆m mod q (h = f−1 ⋆ g mod q)
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the coefficients of r ⋆ g + f ⋆m lie in the interval

[

−
q − 1
2

,
q
2

]

,

which holds with high probability. In such cases,

a = f ⋆ y mod q = r ⋆ g + f ⋆m

m′ = (f ⋆ y mod q) mod p = r ⋆ g + f ⋆m mod p
≡ m mod p. (g = pG, f = 1 + pF)

Therefore, m′ = m =. The ciphertext is decrypted correctly.

4. NTRUEncrypt 14∕29

How does the decryption work?

◦ Dec:
▶ Compute a = f ⋆ y mod q

a = f ⋆ r ⋆ h + f ⋆m mod q (y = r ⋆ h +m mod q)

= f ⋆ r ⋆ f−1 ⋆ g + f ⋆m mod q (h = f−1 ⋆ g mod q)
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the coefficients of r ⋆ g + f ⋆m lie in the interval

[

−
q − 1
2

,
q
2

]

,

which holds with high probability. In such cases,

a = f ⋆ y mod q = r ⋆ g + f ⋆m

m′ = (f ⋆ y mod q) mod p = r ⋆ g + f ⋆m mod p
≡ m mod p. (g = pG, f = 1 + pF)

Therefore, m′ = m =. The ciphertext is decrypted correctly.
4. NTRUEncrypt 14∕29

How does the decryption work?

If an attacker decrypts y with a f ′ where f ′ ≠ f , can she/he recover the
plaintext polynomial m?

4. NTRUEncrypt 15∕29

Decrypt with f ′

◦ Dec:
▶ Compute a = f ′ ⋆ y mod q

a = f ′ ⋆ r ⋆ h + f ′ ⋆m mod q (y = r ⋆ h +m mod q)

= f ′ ⋆ r ⋆ f−1 ⋆ g + f ′ ⋆m mod q (h = f−1 ⋆ g mod q)

((((((((((
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the following equation holds, the attacker can recover m.

a = f ′ ⋆ y mod q = f ′′ ⋆ r ⋆ g + f ′ ⋆m

where f ′′ = f ′ ⋆ f−1 mod q Recall g = pG, f = 1 + pF

f ′ ⋆m and r ⋆ g still have small coefficients, whereas f ′′ ⋆ r ⋆ g is
likely to have large coefficients.

4. NTRUEncrypt 16∕29

Decrypt with f ′

◦ Dec:
▶ Compute a = f ′ ⋆ y mod q

a = f ′ ⋆ r ⋆ h + f ′ ⋆m mod q (y = r ⋆ h +m mod q)

= f ′ ⋆ r ⋆ f−1 ⋆ g + f ′ ⋆m mod q (h = f−1 ⋆ g mod q)

((((((((((
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the following equation holds, the attacker can recover m.

a = f ′ ⋆ y mod q = f ′′ ⋆ r ⋆ g + f ′ ⋆m

where f ′′ = f ′ ⋆ f−1 mod q Recall g = pG, f = 1 + pF

f ′ ⋆m and r ⋆ g still have small coefficients, whereas f ′′ ⋆ r ⋆ g is
likely to have large coefficients.

4. NTRUEncrypt 16∕29

Decrypt with f ′

◦ Dec:
▶ Compute a = f ′ ⋆ y mod q

a = f ′ ⋆ r ⋆ h + f ′ ⋆m mod q (y = r ⋆ h +m mod q)

= f ′ ⋆ r ⋆ f−1 ⋆ g + f ′ ⋆m mod q (h = f−1 ⋆ g mod q)

((((((((((
≡ r ⋆ g + f ⋆m mod q

▶ Compute m′ = a mod p
If the following equation holds, the attacker can recover m.

a = f ′ ⋆ y mod q = f ′′ ⋆ r ⋆ g + f ′ ⋆m

where f ′′ = f ′ ⋆ f−1 mod q Recall g = pG, f = 1 + pF

f ′ ⋆m and r ⋆ g still have small coefficients, whereas f ′′ ⋆ r ⋆ g is
likely to have large coefficients.

4. NTRUEncrypt 16∕29

Example I

Suppose N = 11, p = 3 and q = 23.
Key-Generation:

◦ Choose F (x), G(x) ∈ R s.t. F,G ∈ {−1, 0, 1}N .
F (x) = x10 − x9 + x8 − x4 − x2 + x
f (x) = 3x10 − 3x9 + 3x8 − 3x4 − 3x2 + 3x + 1 ← f (x) = 1 + pF (x)
f−1(x) = −11x10+7x9−8x8+2x7+6x6−x5−2x4−3x3−3x2−11x+2
G(x) = x9 − x8 − x7 + x6 + x4 − 1,
g(x) = 3x9 − 3x8 − 3x7 + 3x6 + 3x4 − 3 ← g(x) = pG(x)

◦ Compute ℎ(x) = f−1(x) ⋆ g(x) mod q
ℎ(x) = 7x10 − 8x9 + 3x8 − 10x6 − 8x5 − 6x3 − 8x2 + 4x + 3

◦ PK: ℎ(x), SK: f (x)

4. NTRUEncrypt 17∕29

Example II

Enc:

◦ Plaintext m ∈ {−1, 0, 1}N
m(x) = x10 − x5 + x3 − 1

◦ Choose r ∈ {−1, 0, 1}N uniformly at random
r(x) = x9 + x7 − x6 − x5 − x4 + x2.

◦ Ciphertext y = r ⋆ h +m mod q
y(x) = −3x10 +9x9 +−8x8 −3x7 +11x6 −6x5 +6x4 −5x3 −2x2 +1

4. NTRUEncrypt 18∕29

Example III

Dec:

◦ Compute a = f ⋆ y mod q = f ⋆ r ⋆ f−1 ⋆ g + f ⋆m mod q
f ⋆ y = 12x10 − 29x8 + 3x7 + 23x6 + 45x5 − 66x4 + 67x3 − 83x2+

63x − 35 ∈ R
a(x) = −11x10 − 6x8 + 3x7 − x5 + 3x4 − 2x3 + 9x2 − 6x + 11 ∈ Rq

◦ Compute m′ = a mod p
Coefficients of a(x) all lie in the interval [−11, 11]. Applying
mod 3 we have

m′(x) = x10 − x5 + x3 − 1 = m(x).

◦ Check
r ⋆ g + f ⋆m = −11x10−6x8+3x7−x5+3x4−2x3+9x2−6x+11 ∈ R

4. NTRUEncrypt 19∕29

Example IV

Dec with incorect secret key f ′ = 1 + 3(x9 − x8 − x6 − x5 + x3 + 1)
◦ Compute a = f ′ ⋆ y mod q = f ′ ⋆ r ⋆ f−1 ⋆ g + f ′ ⋆m mod q

a(x) = 8x10 +5x8 +2x7 −2x6 −9x5 +2x4 −2x3 +6x2 −7x−3 ∈ Rq

◦ Compute m′ = a mod p
m′(x) = −x10 − x8 − x7 + x6 − x4 + x3 − x ≠ m(x).

◦ Check
f ′′ = f ′ ⋆ f−1 mod q = −7x10−9x9+4x8−4x7+6x6−7x5−3x4+3x3+

2x2 − 11x + 4 ∈ Rq
f ′ ⋆m = 7x10−6x9−3x7+6x6−4x5−3x4−2x3+6x2+3x−4 ∈ R
r ⋆ g = −9x10 − 9x9 + 3x6 + 3x5 − 3x3 + 6x2 + 3x + 6
f ′ ⋆ f−1 ⋆ r ⋆ g = 24x10 + 213x9 − 87x8 − 18x7 + 15x6 − 51x5 +
51x4 − 69x3 − 138x2 − 33x + 93
f ′′ ⋆ r ⋆ g has large coefficients compared to q∕2.

4. NTRUEncrypt 20∕29

Conditions for parameters

◦ Each of F,G, r,m have (roughly) 1
3 of their coefficients equal to

each of −1, 0 and 1.
▶ Related to the security of the scheme.

◦ q should be large compared to N .
▶ To ensure the decryption is correct with high probability.

4. NTRUEncrypt 21∕29

What is the hard math problem behind NTRU?

◦ Lattice reduction
▶ Same problem that breaks the knapsack!

◦ If attacker can determine f−1 or g, from h, she gets the private key.

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = g(x) mod q where coefficients of f (x) and g(x) lie in
{−p, 0, p}.

5. Security 22∕29

What is the hard math problem behind NTRU?

◦ Lattice reduction
▶ Same problem that breaks the knapsack!

◦ If attacker can determine f−1 or g, from h, she gets the private key.

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = g(x) mod q where coefficients of f (x) and g(x) lie in
{−p, 0, p}.

5. Security 22∕29

What is the hard math problem behind NTRU?

◦ Recall h = f−1 ⋆ g mod q

◦ Equivalently, f ⋆ h ≡ g mod q. I.e., there exists some integer
vector t such that

f ⋆ h − g =qt

◦ Let

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

, M =
(

IN×N HN×N
0N×N qIN×N

)

So (f ,−t)M = (f , g).
◦ Let  be the lattice spanned by column vectors of M. Then

(f , g) ∈ 

.

5. Security 23∕29

What is the hard math problem behind NTRU?

◦ Recall h = f−1 ⋆ g mod q
◦ Equivalently, f ⋆ h ≡ g mod q. I.e., there exists some integer

vector t such that
f ⋆ h − g =qt

◦ Let

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

, M =
(

IN×N HN×N
0N×N qIN×N

)

So (f ,−t)M = (f , g).
◦ Let  be the lattice spanned by column vectors of M. Then

(f , g) ∈ 

.

5. Security 23∕29

What is the hard math problem behind NTRU?

◦ Recall h = f−1 ⋆ g mod q
◦ Equivalently, f ⋆ h ≡ g mod q. I.e., there exists some integer

vector t such that
f ⋆ h − g =qt

◦ Let

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

, M =
(

IN×N HN×N
0N×N qIN×N

)

So (f ,−t)M = (f , g).

◦ Let  be the lattice spanned by column vectors of M. Then

(f , g) ∈ 

.

5. Security 23∕29

What is the hard math problem behind NTRU?

◦ Recall h = f−1 ⋆ g mod q
◦ Equivalently, f ⋆ h ≡ g mod q. I.e., there exists some integer

vector t such that
f ⋆ h − g =qt

◦ Let

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

, M =
(

IN×N HN×N
0N×N qIN×N

)

So (f ,−t)M = (f , g).
◦ Let  be the lattice spanned by column vectors of M.

Then

(f , g) ∈ 

.

5. Security 23∕29

What is the hard math problem behind NTRU?

◦ Recall h = f−1 ⋆ g mod q
◦ Equivalently, f ⋆ h ≡ g mod q. I.e., there exists some integer

vector t such that
f ⋆ h − g =qt

◦ Let

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

, M =
(

IN×N HN×N
0N×N qIN×N

)

So (f ,−t)M = (f , g).
◦ Let  be the lattice spanned by column vectors of M. Then

(f , g) ∈ 

.

5. Security 23∕29

What is the hard math problem behind NTRU?

The norm of vector (f , g)
◦ Each of F,G have (roughly) 1

3 of their coefficients equal to each of
−1, 0 and 1.

◦ Each of f , g have (roughly) 1
3 of their coefficients equal to each of

−p, 0 and p. ← f (x) = 1 + pF (x), g(x) = pG(x)
◦ The norm of (f , g) is approximately

√

4Np2∕3 = 2
√

3N when p = 3.

However, a vector of length 2N whose coordinates take on random
values in [−q∕2, q∕2] would have norm approximately equal to

q
√

N∕6,

which is much larger (recall q = 2048).
◦ It seems that (f , g) is the shortest vector in the lattice .

5. Security 24∕29

What is the hard math problem behind NTRU?

The norm of vector (f , g)
◦ Each of F,G have (roughly) 1

3 of their coefficients equal to each of
−1, 0 and 1.

◦ Each of f , g have (roughly) 1
3 of their coefficients equal to each of

−p, 0 and p. ← f (x) = 1 + pF (x), g(x) = pG(x)

◦ The norm of (f , g) is approximately
√

4Np2∕3 = 2
√

3N when p = 3.

However, a vector of length 2N whose coordinates take on random
values in [−q∕2, q∕2] would have norm approximately equal to

q
√

N∕6,

which is much larger (recall q = 2048).
◦ It seems that (f , g) is the shortest vector in the lattice .

5. Security 24∕29

What is the hard math problem behind NTRU?

The norm of vector (f , g)
◦ Each of F,G have (roughly) 1

3 of their coefficients equal to each of
−1, 0 and 1.

◦ Each of f , g have (roughly) 1
3 of their coefficients equal to each of

−p, 0 and p. ← f (x) = 1 + pF (x), g(x) = pG(x)
◦ The norm of (f , g) is approximately

√

4Np2∕3 = 2
√

3N when p = 3.

However, a vector of length 2N whose coordinates take on random
values in [−q∕2, q∕2] would have norm approximately equal to

q
√

N∕6,

which is much larger (recall q = 2048).
◦ It seems that (f , g) is the shortest vector in the lattice .

5. Security 24∕29

What is the hard math problem behind NTRU?

The norm of vector (f , g)
◦ Each of F,G have (roughly) 1

3 of their coefficients equal to each of
−1, 0 and 1.

◦ Each of f , g have (roughly) 1
3 of their coefficients equal to each of

−p, 0 and p. ← f (x) = 1 + pF (x), g(x) = pG(x)
◦ The norm of (f , g) is approximately

√

4Np2∕3 = 2
√

3N when p = 3.

However, a vector of length 2N whose coordinates take on random
values in [−q∕2, q∕2] would have norm approximately equal to

q
√

N∕6,

which is much larger (recall q = 2048).

◦ It seems that (f , g) is the shortest vector in the lattice .

5. Security 24∕29

What is the hard math problem behind NTRU?

The norm of vector (f , g)
◦ Each of F,G have (roughly) 1

3 of their coefficients equal to each of
−1, 0 and 1.

◦ Each of f , g have (roughly) 1
3 of their coefficients equal to each of

−p, 0 and p. ← f (x) = 1 + pF (x), g(x) = pG(x)
◦ The norm of (f , g) is approximately

√

4Np2∕3 = 2
√

3N when p = 3.

However, a vector of length 2N whose coordinates take on random
values in [−q∕2, q∕2] would have norm approximately equal to

q
√

N∕6,

which is much larger (recall q = 2048).
◦ It seems that (f , g) is the shortest vector in the lattice .

5. Security 24∕29

NTRU and SVP

◦ There is no proof that breaking NTRUEncrypt is as hard as solving
the Shortest Vector Problem or the Closest Vector Problem.

◦ In 2013, Damien Stehle and Ron Steinfeld created a provably secure
version of NTRU [SS13].

◦ The European Union’s PQCRYPTO project (Horizon 2020
ICT-645622) is evaluating the provably secure Stehle–Steinfeld
version of NTRU as a potential European standard. However, the
Stehle-Steinfeld version of NTRU is "significantly less efficient than
the original scheme."

5. Security 25∕29

NTRU and SVP

◦ There is no proof that breaking NTRUEncrypt is as hard as solving
the Shortest Vector Problem or the Closest Vector Problem.

◦ In 2013, Damien Stehle and Ron Steinfeld created a provably secure
version of NTRU [SS13].

◦ The European Union’s PQCRYPTO project (Horizon 2020
ICT-645622) is evaluating the provably secure Stehle–Steinfeld
version of NTRU as a potential European standard. However, the
Stehle-Steinfeld version of NTRU is "significantly less efficient than
the original scheme."

5. Security 25∕29

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ Hence, both encryption and decryption take (N2) steps, where

each step is extremely fast.
◦ Faster than RSA at equivalent cryptographic strength.
◦ Promising PQC candidate

The National Institute of Standards and Technology wrote
in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor’s Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical".

6. Performance 26∕29

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors

◦ A polynomial multiplication of two polynomial of length N requires
N2 multiplications

◦ Hence, both encryption and decryption take (N2) steps, where
each step is extremely fast.

◦ Faster than RSA at equivalent cryptographic strength.
◦ Promising PQC candidate

The National Institute of Standards and Technology wrote
in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor’s Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical".

6. Performance 26∕29

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications

◦ Hence, both encryption and decryption take (N2) steps, where
each step is extremely fast.

◦ Faster than RSA at equivalent cryptographic strength.
◦ Promising PQC candidate

The National Institute of Standards and Technology wrote
in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor’s Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical".

6. Performance 26∕29

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ Hence, both encryption and decryption take (N2) steps, where

each step is extremely fast.

◦ Faster than RSA at equivalent cryptographic strength.
◦ Promising PQC candidate

The National Institute of Standards and Technology wrote
in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor’s Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical".

6. Performance 26∕29

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ Hence, both encryption and decryption take (N2) steps, where

each step is extremely fast.
◦ Faster than RSA at equivalent cryptographic strength.

◦ Promising PQC candidate
The National Institute of Standards and Technology wrote

in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor’s Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical".

6. Performance 26∕29

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ Hence, both encryption and decryption take (N2) steps, where

each step is extremely fast.
◦ Faster than RSA at equivalent cryptographic strength.
◦ Promising PQC candidate

The National Institute of Standards and Technology wrote
in a 2009 survey that "[there] are viable alternatives for both
public key encryption and signatures that are not vulnerable to
Shor’s Algorithm” and “[of] the various lattice based crypto-
graphic schemes that have been developed, the NTRU family of
cryptographic algorithms appears to be the most practical".

6. Performance 26∕29

Conclusion

◦ A lattice-based public key cryptosystem
◦ Its security relies on difficulty of SVP problem
◦ Has evolved since its introduction
◦ Considered theoretically sound
◦ Unlike RSA and ECC, NTRU is not known to be vulnerable against

quantum computer based attack
◦ It has been standardized (IEEE Std 1363.1, X9.98)

7. Conclusion 27∕29

Thanks for your attention!

Question?

7. Conclusion 28∕29

References I

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman, Ntru: A
ring-based public key cryptosystem, International Algorithmic
Number Theory Symposium, Springer, 1998, pp. 267–288.

Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H
Silverman, An introduction to mathematical cryptography, vol. 1,
Springer, 2008.

Damien Stehlé and Ron Steinfeld, Making ntruencrypt and ntrusign
as secure as standard worst-case problems over ideal lattices, IACR
Cryptol. ePrint Arch. 2013 (2013), 4.

The Sage Developers, Sagemath, the Sage Mathematics Software
System (Version 9.2.0), 2021, https://www.sagemath.org.

7. Conclusion 29∕29

	Introduction
	Convolution Polynomial Rings
	Multiplicative Inverse
	NTRUEncrypt
	Security
	Performance
	Conclusion

