Introduction to NTRU Public Key Cryptosystem[†]

Ling Song

May 30, 2021

[†]Credit for some slides: Hosein Hadipour

Outline

- 1. Introduction
- 2. Convolution Polynomial Rings
- 3. Multiplicative Inverse
- 4. NTRUEncrypt
- 5. Security
- 6. Performance
- 7. Conclusion

NTRU

• NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)

NTRU

NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)
 A public key cryptosystem [HPS98] invented in early 1996 by

Hoffstein

Pipher

Ring of Convolution Polynomials

Definition The ring of convolution polynomials of rank N^1 is the quotient ring

$$R = \frac{\mathbb{Z}[x]}{\langle x^N - 1 \rangle}$$

¹a.k.a. N-th truncated polynomial ring

Ring of Convolution Polynomials

Definition The ring of convolution polynomials of rank N^1 is the quotient ring

$$R = \frac{\mathbb{Z}[x]}{\langle x^N - 1 \rangle}$$

Definition The ring of convolution polynomials modulo q of rank N is the quotient ring

$$R_q = \frac{\mathbb{Z}_q[x]}{\langle x^N - 1 \rangle}$$

¹a.k.a. N-th truncated polynomial ring

How does the elements of convolution polynomial rings look?

How does the elements of convolution polynomial rings look?Every element of *R* has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} = \sum_{i=0}^{N-1} a_i x^i$$
 or $\mathbf{a} = (a_0, \dots, a_{N-1})$

with the coefficients in \mathbb{Z} .

How does the elements of convolution polynomial rings look?Every element of *R* has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} = \sum_{i=0}^{N-1} a_i x^i$$
 or $\mathbf{a} = (a_0, \dots, a_{N-1})$

with the coefficients in \mathbb{Z} . • For every term x^k , if $k = r \mod N$, then

$$x^{k} = x^{r}.$$
$$x^{N} = 1, x^{N+1} = x, ..$$

How does the elements of convolution polynomial rings look?Every element of *R* has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} = \sum_{i=0}^{N-1} a_i x^i$$
 or $\mathbf{a} = (a_0, \dots, a_{N-1})$

with the coefficients in \mathbb{Z} . • For every term x^k , if $k = r \mod N$, then

 $x^{k} = x^{r}.$ $x^{N} = 1, x^{N+1} = x, \dots$

• Polynomials in R_a can also be uniquely identified in the same way.

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.
Addition of polynomials correspond to the usual addition of vectors,

 $a(x) + b(x) \leftrightarrow \overline{(a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots, a_{N-1} + b_{N-1})}.$

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.
Addition of polynomials correspond to the usual addition of vectors,

$$a(x) + b(x) \leftrightarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots, a_{N-1} + b_{N-1})$$

• **Multiply** two polynomials mod $x^N - 1$, i.e., replace x^k with $x^{k \mod N}$.

$$\mathbf{c} = \mathbf{a} \star \mathbf{b}, \quad c_i = \sum_{j=0}^{N-1} a_j b_{i-j}$$

2. Convolution Polynomial Rings

Example

Let
$$N = 3$$
 and $a(x) = 1 + 3x + x^2$, and $b(x) = -4 + x + 2x^2$. Then
 $a(x) + b(x) = (1 - 4) + (3 + 1)x + (1 + 2)x^2 = -3 + 4x + 3x^2$
 $a(x) \star b(x) = -4 - 11x + x^2 + 7x^3 + 2x^4$
 $= -4 - 11x + x^2 + 7 + 2x$
 $= 3 - 9x + x^2 \in R = \frac{\mathbb{Z}[x]}{\langle x^3 - 1 \rangle}$
 $= 3 + 5x + x^2 \in R_7 = \frac{\mathbb{Z}_7[x]}{\langle x^3 - 1 \rangle}.$

Example

Let
$$N = 3$$
 and $a(x) = 1 + 3x + x^2$, and $b(x) = -4 + x + 2x^2$. Then
 $a(x) + b(x) = (1 - 4) + (3 + 1)x + (1 + 2)x^2 = -3 + 4x + 3x^2$
 $a(x) \star b(x) = -4 - 11x + x^2 + 7x^3 + 2x^4$
 $= -4 - 11x + x^2 + 7 + 2x$
 $= 3 - 9x + x^2 \in R = \frac{\mathbb{Z}[x]}{\langle x^3 - 1 \rangle}$
 $= 3 + 5x + x^2 \in R_7 = \frac{\mathbb{Z}_7[x]}{\langle x^3 - 1 \rangle}$.
 $\mathbf{a} \star \mathbf{b} = [a_0 \ a_1 \ a_2] \begin{bmatrix} b_0 \ b_1 \ b_2 \\ b_2 \ b_0 \ b_1 \\ b_1 \ b_2 \ b_0 \end{bmatrix} = [1 \ 3 \ 1] \begin{bmatrix} -4 \ 1 \ 2 \\ 2 \ -4 \ 1 \\ 1 \ 2 \ -4 \end{bmatrix}$
 $= [3 \ -9 \ 1]$

2. Convolution Polynomial Rings

Example

Let
$$N = 3$$
 and $a(x) = 1 + 3x + x^2$, and $b(x) = -4 + x + 2x^2$. Then
 $a(x) + b(x) = (1 - 4) + (3 + 1)x + (1 + 2)x^2 = -3 + 4x + 3x^2$
 $a(x) \star b(x) = -4 - 11x + x^2 + 7x^3 + 2x^4$
 $= -4 - 11x + x^2 + 7 + 2x$
 $= 3 - 9x + x^2 \in R = \frac{\mathbb{Z}[x]}{\langle x^3 - 1 \rangle}$
 $= 3 + 5x + x^2 \in R_7 = \frac{\mathbb{Z}_7[x]}{\langle x^3 - 1 \rangle}$.
 $\mathbf{a} \star \mathbf{b} = [a_0 \ a_1 \ a_2] \begin{bmatrix} b_0 \ b_1 \ b_2 \\ b_2 \ b_0 \ b_1 \\ b_1 \ b_2 \ b_0 \end{bmatrix} = [1 \ 3 \ 1] \begin{bmatrix} -4 \ 1 \ 2 \\ 2 \ -4 \ 1 \\ 1 \ 2 \ -4 \end{bmatrix}$
 $= [3 \ -9 \ 1]$

A polynomial multiplication takes N^2 multiplications.

Convolution Polynomial Rings in Sage I

• Generate
$$R = \frac{\mathbb{Z}[x]}{\langle x^7 - 1 \rangle}$$

N = 7
ZX.<X> = PolynomialRing(ZZ)
R.<x> = ZX.quotient(X^N - 1); R
Univariate Quotient Polynomial Ring in x over
Integer Ring with modulus X^7 - 1

• Generate
$$R_3 = \frac{\mathbb{Z}_3[x]}{\langle x^7 - 1 \rangle}$$

N, q = 7, 3
ZqX.<X> = PolynomialRing(Zmod(q))
Rq.<x> = ZqX.quotient(X^N - 1); Rq
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X^7 + 2

2. Convolution Polynomial Rings

Convolution Polynomial Rings in Sage II

• Choose two elements at random from *R*, and multiply them: [f, g] = [Rq.random_element() for _ in range(2)] print("(f, g) = ", (f, g)) print("f*g = ", f*g) (f, g) = (2*x^6 + 2*x^4 + x^3, 2*x^6 + x^2 + 2*x) f*g = 2*x^6 + 2*x^4 + x^3 + 2*x^2 + 2*x + 1

• Lift $f \in R_3 = \frac{\mathbb{Z}_3[X]}{(X^7 - 1)}$ into $\mathbb{Z}_3[X]$

print(f.parent())
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X⁷ + 2

```
f = f.lift()
print(f.parent())
Univariate Polynomial Ring in X over
Ring of integers modulo 3
```

Multiplicative Inverse I

 $f(x) \in \mathbf{R}_{a}$ has a multiplicative inverse if and only if

$$gcd(f(x), x^N - 1) = 1 \in \mathbb{Z}_q[x].$$

If so, then the inverse $f(x)^{-1} \in R_q$ can be computed using the extended Euclidean algorithm to find polynomials $u(x), v(x) \in \mathbb{Z}_q[x]$ satisfying

$$f(x) \star u(x) + (x^N - 1) \star v(x) = 1$$

Then $f^{-1}(x) = u(x) \in R_q$.

Multiplicative Inverse II

You can simply compute the inverse via SageMath[The21] (if it exists!)

```
reset()
N, q = 7, 4
Zx.<X> = ZZ[]
f = X^6 - X^4 + X^3 + X^2 -1
Zq.<a> = PolynomialRing(Zmod(q))
f = Zq(f) # Moving f from Zx[x] into Zq[a]
print("gcd(f, a^N - 1) = ", f.gcd(a^N - 1))
f_inv = f.inverse_mod(a^N - 1); f_inv(a=X)
```

```
gcd(f, a^N - 1) = 1
X^5 + 3*X^4 + 3*X^3 + 2*X^2
```

• Check to see if the multiplication of $f \star f^{-1} = 1 \mod q$? $Zq(f*f_inv).mod(a^N - 1)$

Parameters: N, p, q, (p, q) = 1. E.g., N = 401, p = 3, q = 2048

Parameters: N, p, q, (p, q) = 1. E.g., N = 401, p = 3, q = 2048Definition (Centered modular reduction) For an odd integer n and integers a and b, define

 $a \mod n = b$ if $a \equiv b \mod n$ and $-\frac{n-1}{2} \le b \le \frac{n}{2}$.

For example $a \mod 5 \in \{-2, -1, 0, 1, 2\}$, whereas $a \mod 5 \in \{0, 1, 2, 3, 4\}$.

• Key-Generation:

• Key-Generation:

- Choose $F(x), G(x) \in R$ s.t. $\mathbf{F}, \mathbf{G} \in \{-1, 0, 1\}^N$.
- f(x) = 1 + pF(x), compute $f^{-1}(x)$
- $\blacktriangleright \quad \overline{g(x)} = p\overline{G(x)}$
- Compute $h(x) = f^{-1}(x) \star g(x) \mod q$

• Key-Generation:

- Choose $F(x), G(x) \in R$ s.t. $\mathbf{F}, \mathbf{G} \in \{-1, 0, 1\}^N$.
- f(x) = 1 + pF(x), compute $f^{-1}(x)$
- g(x) = pG(x)
- Compute $h(x) = f^{-1}(x) \star g(x) \mod q$
- **PK**: h(x), **SK**: f(x)

Key-Generation:

- Choose $F(x), \overline{G}(x) \in \mathbb{R}$ s.t. $\mathbf{F}, \mathbf{G} \in \{-1, 0, 1\}^N$.
- f(x) = 1 + pF(x), compute $f^{-1}(x)$
- g(x) = pG(x)
- Compute $h(x) = f^{-1}(x) \star g(x) \mod q$
- **PK**: h(x), **SK**: f(x)

• Enc:

- Plaintext $\mathbf{m} \in \{-1, 0, 1\}^N$
- Choose $\mathbf{r} \in \{-1, 0, 1\}^N$ uniformly at random
- \blacktriangleright Ciphertext $\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$

Key-Generation:

- Choose $F(x), G(x) \in R$ s.t. $\mathbf{F}, \mathbf{G} \in \{-1, 0, 1\}^N$.
- f(x) = 1 + pF(x), compute $f^{-1}(x)$
- $\mathbf{p}(x) = pG(x)$
- Compute $h(x) = f^{-1}(x) \star g(x) \mod q$
- **PK**: h(x), SK: f(x)

• Enc:

- Plaintext $\mathbf{m} \in \{-1, 0, 1\}^N$
- Choose $\mathbf{r} \in \{-1, 0, 1\}^N$ uniformly at random
- \blacktriangleright Ciphertext $\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$

• Dec:

Compute $\mathbf{a} = \mathbf{f} \star \mathbf{v} \mod q$ Compute $\mathbf{m'} = \mathbf{a} \mod p$

• Dec:

Compute $\mathbf{a} = \mathbf{f} \star \mathbf{y} \mod q$ $\mathbf{a} = \mathbf{f} \star \mathbf{r} \star \mathbf{h} + \mathbf{f} \star \mathbf{m} \mod q$ $(\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q)$ $= \mathbf{f} \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$ $(\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q)$

 $\equiv \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$

• Dec:

 $\blacktriangleright \quad \text{Compute } \mathbf{a} = \mathbf{f} \star \mathbf{y} \mod q$

 $\mathbf{a} = \mathbf{f} \star \mathbf{r} \star \mathbf{h} + \mathbf{f} \star \mathbf{m} \mod q \quad (\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q)$ $= \mathbf{f} \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q \quad (\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q)$ $\equiv \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$

Compute $\mathbf{m'} = \mathbf{a} \mod p$ If the coefficients of $\mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m}$ lie in the interval

$$\left[-\frac{q-1}{2},\frac{q}{2}\right]$$

which holds with high probability. In such cases,

 $\mathbf{a} = \mathbf{f} \star \mathbf{y} \mod q = \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m}$

 $\mathbf{m'} = (\mathbf{f} \star \mathbf{y} \mod q) \mod p = \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod p$

 \equiv **m** mod *p*. (**g** = **pG**, **f** = **1** + **pF**)

• Dec:

 $\blacktriangleright \quad \text{Compute } \mathbf{a} = \mathbf{f} \star \mathbf{y} \mod q$

 $\mathbf{a} = \mathbf{f} \star \mathbf{r} \star \mathbf{h} + \mathbf{f} \star \mathbf{m} \mod q \quad (\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q)$ $= \mathbf{f} \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q \quad (\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q)$ $\equiv \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$

Compute $\mathbf{m'} = \mathbf{a} \mod p$ If the coefficients of $\mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m}$ lie in the interval

$$\left[-\frac{q-1}{2},\frac{q}{2}\right]$$

which holds with high probability. In such cases,

 $\mathbf{a} = \mathbf{f} \star \mathbf{y} \mod q = \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m}$

 $\mathbf{m'} = (\mathbf{f} \star \mathbf{y} \mod q) \mod \overline{p = \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod p}$

 \equiv **m** mod *p*. (**g** = **pG**, **f** = **1** + **pF**)

Therefore, $\mathbf{m}' = \mathbf{m} =$. The ciphertext is decrypted correctly.

If an attacker decrypts y with a f' where $f' \neq f$, can she/he recover the plaintext polynomial m?

Decrypt with f'

Decrypt with f'

• Dec:

Compute $\mathbf{a} = \mathbf{f}' \star \mathbf{y} \mod q$

 $\mathbf{a} = \mathbf{f}' \star \mathbf{r} \star \mathbf{h} + \mathbf{f}' \star \mathbf{m} \mod q \quad (\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q)$ $= \mathbf{f}' \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f}' \star \mathbf{m} \mod q \quad (\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q)$ $\equiv \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$

Decrypt with f'

• Dec:

Compute $\mathbf{a} = \mathbf{f}' \star \mathbf{y} \mod q$

 $\mathbf{a} = \mathbf{f}' \star \mathbf{r} \star \mathbf{h} + \mathbf{f}' \star \mathbf{m} \mod q \quad (\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q)$ $= \mathbf{f}' \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f}' \star \mathbf{m} \mod q \quad (\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q)$ $\equiv \mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$

Compute $\mathbf{m'} = \mathbf{a} \mod p$ If the following equation holds, the attacker can recover \mathbf{m} . $\mathbf{a} = \mathbf{f'} \star \mathbf{y} \mod q = \mathbf{f''} \star \mathbf{r} \star \mathbf{g} + \mathbf{f'} \star \mathbf{m}$ where $\mathbf{f''} = \mathbf{f'} \star \mathbf{f^{-1}} \mod q$ Recall $\mathbf{g} = \mathbf{pG}, \mathbf{f} = \mathbf{1} + \mathbf{pF}$ $\mathbf{f'} \star \mathbf{m}$ and $\mathbf{r} \star \mathbf{g}$ still have small coefficients, whereas $\mathbf{f''} \star \mathbf{r} \star \mathbf{g}$ is likely to have large coefficients.

Example I

Suppose N = 11, p = 3 and q = 23. Key-Generation:

- Choose $F(x), G(x) \in \mathbb{R}$ s.t. F, $G \in \{-1, 0, 1\}^N$. $F(x) = x^{10} - x^9 + x^8 - x^4 - x^2 + x$ $f(x) = 3x^{10} - 3x^9 + 3x^8 - 3x^4 - 3x^2 + 3x + 1 \leftarrow f(x) = 1 + pF(x)$ $f^{-1}(x) = -11x^{10} + 7x^9 - 8x^8 + 2x^7 + 6x^6 - x^5 - 2x^4 - 3x^3 - 3x^2 - 11x + 2$ $G(x) = x^9 - x^8 - x^7 + x^6 + x^4 - 1$, $g(x) = 3x^9 - 3x^8 - 3x^7 + 3x^6 + 3x^4 - 3 \leftarrow g(x) = pG(x)$
- Compute $h(x) = f^{-1}(x) \star g(x) \mod q$ $h(x) = 7x^{10} - 8x^9 + 3x^8 - 10x^6 - 8x^5 - 6x^3 - 8x^2 + 4x + 3$
- PK: h(x), SK: f(x)

0 0

Example II

Enc:

- Plaintext $\mathbf{m} \in \{-1, 0, 1\}^N$ $m(x) = x^{10} - x^5 + x^3 - 1$
- Choose $\mathbf{r} \in \{-1, 0, 1\}^N$ uniformly at random $r(x) = x^9 + x^7 x^6 x^5 x^4 + x^2$.
- Ciphertext $\mathbf{y} = \mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$ $y(x) = -3x^{10} + 9x^9 + -8x^8 - 3x^7 + 11x^6 - 6x^5 + 6x^4 - 5x^3 - 2x^2 + 1$

Example III

Dec:

• Compute $\mathbf{a} = \mathbf{f} \star \mathbf{y} \mod q = \mathbf{f} \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} \mod q$ $\mathbf{f} \star \mathbf{y} = 12x^{10} - 29x^8 + 3x^7 + 23x^6 + 45x^5 - 66x^4 + 67x^3 - 83x^2 + 63x - 35 \in \mathbb{R}$ $a(x) = -11x^{10} - 6x^8 + 3x^7 - x^5 + 3x^4 - 2x^3 + 9x^2 - 6x + 11 \in \mathbb{R}_q$

Compute m' = a mod p
 Coefficients of a(x) all lie in the interval [-11, 11]. Applying mod 3 we have

$$m'(x) = x^{10} - x^5 + x^3 - 1 = m(x)$$

Check

 $\mathbf{r} \star \mathbf{g} + \mathbf{f} \star \mathbf{m} = -11x^{10} - 6x^8 + 3x^7 - x^5 + 3x^4 - 2x^3 + 9x^2 - 6x + 11 \in \mathbb{R}$

Example IV

Dec with incorect secret key $f' = 1 + 3(x^9 - x^8 - x^6 - x^5 + x^3 + 1)$

- Compute $\mathbf{a} = \mathbf{f}' \star \mathbf{y} \mod q = \mathbf{f}' \star \mathbf{r} \star \mathbf{f}^{-1} \star \mathbf{g} + \mathbf{f}' \star \mathbf{m} \mod q$ $a(x) = 8x^{10} + 5x^8 + 2x^7 - 2x^6 - 9x^5 + 2x^4 - 2x^3 + 6x^2 - 7x - 3 \in R_q$
- Compute $\mathbf{m}' = \mathbf{a} \mod p$ $m'(x) = -x^{10} - x^8 - x^7 + x^6 - x^4 + x^3 - x \neq m(x).$
- Check

 $\mathbf{f}'' = \mathbf{f}' \star \mathbf{f}^{-1} \mod q = -7x^{10} - 9x^9 + 4x^8 - 4x^7 + 6x^6 - 7x^5 - 3x^4 + 3x^3 + 2x^2 - 11x + 4 \in R_q$ $\mathbf{f}' \star \mathbf{m} = 7x^{10} - 6x^9 - 3x^7 + 6x^6 - 4x^5 - 3x^4 - 2x^3 + 6x^2 + 3x - 4 \in R$ $\mathbf{r} \star \mathbf{g} = -9x^{10} - 9x^9 + 3x^6 + 3x^5 - 3x^3 + 6x^2 + 3x + 6$ $\mathbf{f}' \star \mathbf{f}^{-1} \star \mathbf{r} \star \mathbf{g} = 24x^{10} + 213x^9 - 87x^8 - 18x^7 + 15x^6 - 51x^5 + 51x^4 - 69x^3 - 138x^2 - 33x + 93$ $\mathbf{f}'' \star \mathbf{r} \star \mathbf{g}$ has large coefficients compared to q/2.

0 0 0

Conditions for parameters

• Each of $\mathbf{F}, \mathbf{G}, \mathbf{r}, \mathbf{m}$ have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -1, 0 and 1.

Related to the security of the scheme.

• q should be large compared to N.

To ensure the decryption is correct with high probability.

Lattice reduction

Same problem that breaks the knapsack!

 $\circ\,$ If attacker can determine f^{-1} or g, from h, she gets the private key.

• Lattice reduction

Same problem that breaks the knapsack!

• If attacker can determine f^{-1} or g, from h, she gets the private key.

The NTRU Key Recovery Problem[HPSS08] Given h(x), find ternary polynomials f(x) and g(x) satisfying $f(x) \star h(x) = g(x) \mod q$ where coefficients of f(x) and g(x) lie in $\{-p, 0, p\}$.

0 0

What is the hard math problem behind NTRU? \circ Recall $\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q$

- Recall $\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q$
- Equivalently, $\mathbf{f} \star \mathbf{h} \equiv \mathbf{g} \mod q$. I.e., there exists some integer vector \mathbf{t} such that

$$\mathbf{f} \star \mathbf{h} - \mathbf{g} = q\mathbf{t}$$

- Recall $\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q$
- Equivalently, $\mathbf{f} \star \mathbf{h} \equiv \mathbf{g} \mod q$. I.e., there exists some integer vector \mathbf{t} such that

$$\mathbf{f} \star \mathbf{h} - \mathbf{g} = q\mathbf{t}$$

• Let

$$\mathbf{H} = \begin{pmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ \vdots & \ddots & & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} \mathbf{I}_{N \times N} & \mathbf{H}_{N \times N} \\ \mathbf{0}_{N \times N} & q \mathbf{I}_{N \times N} \end{pmatrix}$$

So $(\mathbf{f}, -\mathbf{t})\mathbf{M} = (\mathbf{f}, \mathbf{g}).$

- Recall $\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q$
- Equivalently, $\mathbf{f} \star \mathbf{h} \equiv \mathbf{g} \mod q$. I.e., there exists some integer vector \mathbf{t} such that

$$\mathbf{f} \star \mathbf{h} - \mathbf{g} = q\mathbf{t}$$

• Let

 $\mathbf{H} = \begin{pmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ \vdots & \ddots & & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} \mathbf{I}_{N \times N} & \mathbf{H}_{N \times N} \\ \mathbf{0}_{N \times N} & q \mathbf{I}_{N \times N} \end{pmatrix}$ So $(\mathbf{f}, -\mathbf{t})\mathbf{M} = (\mathbf{f}, \mathbf{g}).$ \circ Let \mathcal{L} be the lattice spanned by column vectors of \mathbf{M} .

0 0 0

- Recall $\mathbf{h} = \mathbf{f}^{-1} \star \mathbf{g} \mod q$
- Equivalently, $\mathbf{f} \star \mathbf{h} \equiv \mathbf{g} \mod q$. I.e., there exists some integer vector \mathbf{t} such that

$$\mathbf{f} \star \mathbf{h} - \mathbf{g} = q\mathbf{t}$$

• Let

 $\mathbf{H} = \begin{pmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ \vdots & \ddots & & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} \mathbf{I}_{N \times N} & \mathbf{H}_{N \times N} \\ \mathbf{0}_{N \times N} & q \mathbf{I}_{N \times N} \end{pmatrix}$ So $(\mathbf{f}, -\mathbf{t})\mathbf{M} = (\mathbf{f}, \mathbf{g}).$ \circ Let \mathcal{L} be the lattice spanned by column vectors of \mathbf{M} . Then $(\mathbf{f}, \mathbf{g}) \in \mathcal{L}$

The norm of vector (\mathbf{f}, \mathbf{g})

• Each of **F**, **G** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -1, 0 and 1.

The norm of vector (\mathbf{f}, \mathbf{g})

- Each of **F**, **G** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -1, 0 and 1.
- Each of **f**, **g** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -p, 0 and p. $\leftarrow f(x) = 1 + pF(x), g(x) = pG(x)$

0 0 0

The norm of vector (\mathbf{f}, \mathbf{g})

- Each of **F**, **G** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -1, 0 and 1.
- Each of **f**, **g** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -p, 0 and p. $\leftarrow f(x) = 1 + pF(x), g(x) = pG(x)$
- $\circ\,$ The norm of (f,g) is approximately

$$\sqrt{4Np^2/3} = 2\sqrt{3N}$$
 when $p = 3$.

0 0 0

The norm of vector (\mathbf{f}, \mathbf{g})

- Each of **F**, **G** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -1, 0 and 1.
- Each of **f**, **g** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -p, 0 and p. $\leftarrow f(x) = 1 + pF(x), g(x) = pG(x)$

 $\circ\,$ The norm of (f,g) is approximately

$$\sqrt{4Np^2/3} = 2\sqrt{3N}$$
 when $p = 3$.

However, a vector of length 2N whose coordinates take on random values in [-q/2, q/2] would have norm approximately equal to

$$q\sqrt{N/6}$$
,

which is much larger (recall q = 2048).

0 0

The norm of vector (\mathbf{f}, \mathbf{g})

- Each of **F**, **G** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -1, 0 and 1.
- Each of **f**, **g** have (roughly) $\frac{1}{3}$ of their coefficients equal to each of -p, 0 and p. $\leftarrow f(x) = 1 + pF(x), g(x) = pG(x)$

 $\circ\,$ The norm of (f,g) is approximately

$$\sqrt{4Np^2/3} = 2\sqrt{3N}$$
 when $p = 3$.

However, a vector of length 2N whose coordinates take on random values in [-q/2, q/2] would have norm approximately equal to

$$q\sqrt{N/6}$$

which is much larger (recall q = 2048).

• It seems that (\mathbf{f}, \mathbf{g}) is the shortest vector in the lattice \mathcal{L} .

0 0

NTRU and SVP

• There is no proof that breaking NTRUEncrypt is as hard as solving the Shortest Vector Problem or the Closest Vector Problem.

NTRU and SVP

- There is no proof that breaking NTRUEncrypt is as hard as solving the Shortest Vector Problem or the Closest Vector Problem.
- In 2013, Damien Stehle and Ron Steinfeld created a provably secure version of NTRU [SS13].
- The European Union's PQCRYPTO project (Horizon 2020 ICT-645622) is evaluating the provably secure Stehle–Steinfeld version of NTRU as a potential European standard. However, the Stehle-Steinfeld version of NTRU is "significantly less efficient than the original scheme."

0 0 0

 The most time consuming part of encryption and decryption is the polynomial multiplication

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- $\circ\,$ A polynomial multiplication of two polynomial of length N requires N^2 multiplications

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- $\circ\,$ A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- Hence, both encryption and decryption take $\mathcal{O}(N^2)$ steps, where each step is extremely fast.

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- $\circ\,$ A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- $\circ\,$ Hence, both encryption and decryption take $\mathcal{O}(N^2)$ steps, where each step is extremely fast.
- Faster than RSA at equivalent cryptographic strength.

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- $\circ\,$ Hence, both encryption and decryption take $\mathcal{O}(N^2)$ steps, where each step is extremely fast.
- Faster than RSA at equivalent cryptographic strength.
- Promising PQC candidate

The National Institute of Standards and Technology wrote in a 2009 survey that "[there] are viable alternatives for both public key encryption and signatures that are not vulnerable to Shor's Algorithm" and "[of] the various lattice based cryptographic schemes that have been developed, the NTRU family of cryptographic algorithms appears to be the most practical".

Conclusion

- A lattice-based public key cryptosystem
- Its security relies on difficulty of SVP problem
- Has evolved since its introduction
- Considered theoretically sound
- Unlike RSA and ECC, NTRU is not known to be vulnerable against quantum computer based attack
- It has been standardized (IEEE Std 1363.1, X9.98)

Thanks for your attention!

Question?

References I

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman, Ntru: A ring-based public key cryptosystem, International Algorithmic Number Theory Symposium, Springer, 1998, pp. 267–288.

Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman, An introduction to mathematical cryptography, vol. 1, Springer, 2008.

Damien Stehlé and Ron Steinfeld, Making ntruencrypt and ntrusign as secure as standard worst-case problems over ideal lattices, IACR Cryptol. ePrint Arch. 2013 (2013), 4.

The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.2.0), 2021, https://www.sagemath.org.