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RSA

> p,g AFAREEL, N=pg

> p(N)=(p-D@—-1

> ke, ged(e,(N) )=1,115Ed, imEed=1 mod ¢(N)
> 253 (N,e)

» FAFE: d

» 0Z2: BIm, c=me mod n

» % m=cd mod n



Attacks on the Implementation
or the Mathematics.

» Recover the plaintext
« Recover the private key



Relaxed models

» Stereotyped messages (with partial
knowledge of m )

» With partial knowledge of p

» With small decryption exponent d
p- 18






Stereotyped messages

c=m° (mod N)
™M = 1)

4

“The secret key for the day is: desktop ”
f(g;) — C"™ (mo i 35')6 (mOd N)

x 1S small compared to N



Example

N,e = 3,c are known. m has 512 bits
where only the least 72 bits are unknown.

f(x)=c—(myg+x) mod N

: 2
flx)=c—( )°> mod

f(x) has a small solution but its coefficients
are not smaill.




Solving f(x)

» Factoring N
Bf(x)=0mod p, f(x) =0mod g
m Then solving f(x) Is easy

» But the factorization of N is unknown

» Recall that x is small



f(x) =0 (mod N) with |x| < X

|

g(x) = 0 over Z

Finding integer roofts of integer polynomials is easy:
we can find roots over R using numerical analysis

(e.g., Newton's method) and then round the
approximations of the roots to the nearest intfeger.




An infuitive example

» LetN=17%19 = 323 and let
>
. f(x) = %%+ 33x + 215 Property of g(x):
Find f(x) = 0 mod N 7. 9f(x): multiple of
» x, = 3 is asolution, but f(3) + 0 overZ

f(x)
2. N(x + 6): multiple
of N

» Define
g(x) =9f(x) — N(x + 6) =9x% — 26x — 3

f(xg) =0mod N = g(x;) =0mod N
— g =0rover Z

g(x) has small coefficients and satfisfies g(3) = 0. The root
can be found using Newton's method over R.






Condition to remove “mod”

» Let M,X e Nand F(x) = X%, a;x! € Z[x]

» Suppose xy € Zis a solution to F(x) = 0 mod M such

» Associate with F(x) the row vector
br — G OEX - .. X )

Theorem 19.1.2 (Howgrave-Graham [208]) Let F(x), X, M, b be as above (i.e., there

is some xo such that |xo| < X and F(xo) =0 (mod M)). If ||br|| < M/~/d + 1 then
F(xo) =0.




Theorem 19.1.2 (Howgrave-Graham [208]) Let F(x), X, M, bg be as above (i.e., there
is some xo such that |xo| < X and F(xo) =0 (mod M)). If ||bp| < M/~d + 1 then
F(Xo) = 0.

Proof Recall the Cauchy-Schwarz inequality (3 7, x;v,)> <O, xH(O 1, y?) for
X;, ;i € R.Taking x; > Oand y; = 1 for I <i < n one has

n

n
E X < nE xf
i=1

i=l

d

d d
Foxo)l = Y aixh| <Y laillxol <) lag] X'
=0 =0

i=0

<JVd+1|brll <Vd+IM/NJd+1=M

where the third inequality is Cauchy-Schwarz, so —M < F(xg) < M. But F(xy) =
0O (mod M) and so F(xg) = 0. ]




It F(x) does not satisty the condifion

» For our F(x), if ||bg]| < M/v/d + 1 does not hold, how can
we doe

They are mulfiples of M
and all have solufion

» Considerd + 1 polynomials x = xo mod M
G;i(x) =Mxtforo<i<d

and F(x).
» Let L be defined with these d + 1 polynomials.
» Derive a polynomial with small efficient via LLL algorithm.



It F(x) does not satisty the condifion

» Consider d + 1 polynomials
Gi(x) =Mx'for0<i<d
and F(x).
» Each row of B associates with a polynomial.
» Lisspanned by d + 1 row vectors.

0 0
0 0

y 0 e A{{Xﬂ'—l 0
dp A X e Ay Xn"—] Xd




LLL algorithm + Howgrave-Graham's
theorem

Theorem 19.1.5 Let the notation be as above and let G(x) be the polynomial corresponding
to the first vector in the LLL-reduced basis for L. Set c;(d) =2""*(d + 1)V If X <
c1(d)M D then any root xo of F(x) modulo M such that |xo| < X satisfies G(xg) = 0
in 7. Ml/dz

Proof Recall that b, satisfies

b, || <29V det(L)/" = 2474 /D xd/2, »

For b, to satisfy the conditions of Howgrave-Graham’s theorem (i.e., ||b,]| < M//d + 1)
it 1s sufficient that

Zd/4Md/(d+l)Xd/2 < M/\/m

This can be written as

Vd + 12442 — pt/d+h. -
bound is M1/6

which is equivalent to the condition in the statement of the theorem. [




Example 19.1.6 Let M = 10001 and consider the polynomial

F(x) = x* + 10x> + 5000x — 222.

One can check that F'(x) 1s irreducible, and that £ (x) has the small solution xo = 4 modulo
M. Note that |xo| < M'° so one expects to be able to find x, using the above method.
Suppose X = 10 is the given bound on the size of x;. Consider the basis matrix

M 0 0 0
0 MX 0 0
0 0 MX?> 0
—222 5000X 10X* X°

B =

Running LLL on this matrix gives a reduced basis, the first row of which is
(444, 10, —2000, —2000).
The polynomial corresponding to this vector is
G(x) =444 + x —20x* — 2x°.

Running Newton’s root-finding method on G(x) gives the solution x, = 4.




Can we do bettere Vo M o

a a X o oag XU oxd

» The bigger X, the better.

» Actually, LLL algorithm + Howgrave-Graham's theorem
work well as long as
dec@aRERn 2 im of L

In the previous theorem, it is 2¢/4M*/(@+Dxd/2 < M /7/[d + 1

» Strategies for constructing lattice £
1.  Add rows to L that contribute less than M to the det

2. Increase the power of M on the right hand side.
det(£) < M9M — det(£) < bigger modulusd™



Strategy |1 e

a a X o oag XU oxd

1. Addrows to £ that contribute less than M to the det
Add rows corresponding to x'F(x) |

)

M 0 0 0
0  MX 0 0
s_| © 0 MXx> 0
—222 5000X  10X> X3
0  —222X 5000X% 10X  Xx*
0

0 —222X? 5000X° 10X* X°

Exercise 19.1.8 Let G(x) be a polynomial of degree d. Show that taking d x-shifts
G(x), xG(x), ..., x7'G(x) gives a method that works for X ~ M !/d=D.

Better bound




Strategy 2

2. Increase the power of M on the right hand side.
det(£) < M9™M — det(£) < bigger modulusd™

M"=1-JFJ(x) = 0 mod M1



Coppersmith method

Define G; ;(x) = M" ' JFI(x)x' for0 < i < d,0 <j < h. Note
Gl-,j(xo) = 0 mod IWh_1

(d—1)/(d(dh — 1)) =¢€

Theorem 19.1.9 (Coppersmith) Let 0 < € < min{0.18, 1/d}. Let F(x) be a monic poly-
1/d—e

nomial of degree d with one or more small roots xo modulo M such that |xo| < M

Then x, can be found in time, bounded by a polynomial in d, 1/e and log(M).

Better bound

The proof is similar fo the one on slide 17 and thus is omitted here.







Relaxed models

» Stereotyped messages (with partial
knowledge of m )

» With partial knowledge of p

» With small decryption exponent d
p- 18



Stereotyped message attack

N, e = 3,c are known. Higher bits of m are
known.

f(x)=c—(myg+x) mod N

: 2
f(x) =c—=(mg+ )° mod

We can recover x, if |x,| < N1/3



With partial knowledge of p

Theorem 19.4.2 Let N = pg with p < q < 2p. Let 0 < € < 1/4, and suppose p € N is

|

l.ff"l_(:_ g . ; y ’ =Va 4 . ) . Cy - 5 1 1 - Vg 177
3 le /%7€, Then given N and p one can factor N in time polynomial

such that |p — p| <
in log(N) and 1/e.

Let F(x) = p + x . Define h+1 polynomials:

N, N"'F(x), N"2F(x)*, ... .NF ()" Fo)' x Qo' xR0

Take h > max{4,1/4€}, the above thm holds



RSA with small decryption exponent d

e-d=1mod @(N)
= e-d=1+ k-@(N)
= k-@(N)+1=0mode

= k-(N+1—p—q)+1=0mode
\_'_’ | q ) |\ q )

f(x,Y): ( ) 1 = 0 mod



Bivariate case
-- Condition to remove “mod”

> h(x,y) =X a;; x'y!
> [|RCL 2 =Xl af; |

Fact 4 (HG98). Let h(x,y) € Z|x,y] be a polynomial which is a sum of at most
w monomials. Suppose that

a. h(zo,yo0) = 0 mod €™ for some positive integer m where |xo| < X and |yo| <

Y., and

b. [[h(zX,yY)|| < e™/\/w.

Then h(xzo,yo0) = 0 holds over the integers.




Construct Lattice

m—k m—k

gi(a,y) = a' ff(x,y)e and  hjg(x,y) =y [ (x,y)e

0<k<mO0<i<m-kO0<j<tlx) <X=¢%]|yl <Y=¢e%
1 T TY 22 T4y 7Y

e2 X
eAX eXY
e2 X2
eX eAX? eX?Y
24X 2XY  AZX? 24X?%7Y X?y?
e2Y

eAXY
2AXY A2X?Y 2AX%Y? Y  2XY? XEY:I)

Boneh-Durfee basis matrix for m =2, t =1




RSA with small decryption exponent d

k-(N+1—p—q)+1=0mode

e-d=1+k-(N+1—p—q)
=k-N+k-(1—p—q) +1
—e-d=k-N
e k

_— — X —
N d




Conclusion

f(zg) =0 (mod N) with |zg] < X

!

All the cryptanalysis
of RSA Is carried
out under relaxed
models.

g(zg) =0 (mod N™)
lg(zX)]| < ‘ﬁ

g(zg) = 0 over Z



The bound tor by

Ibolcose 1 Ib2lCcosO _ .
{ ||bb12|| 12 = coses% { llbb1*ll o — COSOS\/E
e _ 2l /§ )
. b1 s il 8
b1*=b i 1
W S Saas bit=b Sinezx/(ﬁ-s:?)
b2*: - b *e It?*l \/8
2 2
2 D by > V(6-€?)

(1.6) Proposition. Let by, b,,...,b, be a reduced basis for a lattice L in R", and let
b¥,b%,...,bY¥ be defined as above. Then we have

(1.7) b2<2 bR for 15j<isn,

(1.8) dL)s 1] pj=2""""%-d(L),
i=1

(1.9) |by| 20~ V4. (L)1






