# RSA and Coppersmith Method 

> 宋 凌
> 2021.06.09

## Outline

$\checkmark$ RSA
> Relaxed models for attacking RSA

- Intuition
- Coppersmith method
- Application to RSA


## RSA

$>p, q$ 为两大素数，$N=p q$
－$\varphi(N)=(p-1)(q-1)$

- 选择e， $\operatorname{gcd}(\mathrm{e}, \varphi(N))=1$ ，计算d，满足ed＝1 $\bmod \varphi(N)$
- 公钥：（ $\mathrm{N}, \mathrm{e}$ ）
$>$ 私钥： d
- 加密：取m，$c=m^{e} \bmod n$
- 解密：$m=c^{d} \bmod n$


# Attacks on the Implementation or the Mathematics. 

- Recover the plaintext
- Recover the private key


## Relaxed models

- Stereotyped messages (with partial knowledge of m )
- With partial knowledge of $p$
- With small decryption exponent d

Intuition

## Stereotyped messages

$$
\begin{aligned}
& c=m^{e} \quad(\bmod N) \\
& m=m_{0}+x_{0}
\end{aligned}
$$

"The secret key for the day is: desktop "

$$
f(x)=c-\left(m_{0}+x\right)^{e} \quad(\bmod N)
$$

$x$ is small compared to N

## Example

$N, e=3, c$ are known. $m$ has 512 bits where only the least 72 bits are unknown.

$$
\begin{aligned}
& f(x)=c-\left(m_{0}+x\right)^{e} \bmod N \\
& f(x)=c-\left(m_{0}+x\right)^{3} \bmod N
\end{aligned}
$$

$f(x)$ has a small solution but its coefficients are not small.

## Solving f(x)

$>$ Factoring N
$\square f(x) \equiv 0 \bmod \mathrm{p}, f(x) \equiv 0 \bmod \mathrm{q}$

- Then solving $f(x)$ is easy
$>$ But the factorization of N is unknown
- Recall that $x$ is small


## $f(x)=0(\bmod N)$ with $|x|<X$

$$
g(x)=0 \text { over } \mathbb{Z}
$$

Finding integer roots of integer polynomials is easy: we can find roots over R using numerical analysis (e.g., Newton's method) and then round the approximations of the roots to the nearest integer.

## An intuitive example

Let $\mathrm{N}=17^{*} 19=323$ and let

$$
f(x)=x^{2}+33 x+215
$$

Find $f(x) \equiv 0 \bmod N$
$x_{0}=3$ is a solution, but $f(3) \neq 0$ over $\mathbb{Z}$

## Property of $\mathrm{g}(\mathrm{x})$ :

 1. $9 f(x)$ : multiple of $f(x)$2. $N(x+6)$ : multiple of N

- Define

$$
\begin{gathered}
g(x)=9 f(x)-N(x+6)=9 x^{2}-26 x-3 \\
f\left(x_{0}\right) \equiv 0 \bmod N \Rightarrow g\left(x_{0}\right) \equiv 0 \bmod N \\
\Rightarrow g\left(x_{0}\right)=0 \text { over } \mathbb{Z}
\end{gathered}
$$

$g(x)$ has small coefficients and satisfies $g(3)=0$. The root can be found using Newton's method over $\mathbb{R}$.

Coppersmith Method

## Condition to remove "mod"

- Let $M, X \in \mathbb{N}$ and $F(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{Z}[x]$
- Suppose $x_{0} \in \mathbb{Z}$ is a solution to $F(x)=0 \bmod M$ such that $\left|x_{0}\right|<X$.
- Associate with $\mathrm{F}(x)$ the row vector

$$
b_{F}=\left(a_{0}, a_{1} X, a_{2} X^{2}, \ldots, a_{d} X^{d}\right)
$$

Theorem 19.1.2 (Howgrave-Graham [268]) Let $F(x), X, M, b_{F}$ be as above (i.e., there is some $x_{0}$ such that $\left|x_{0}\right| \leq X$ and $F\left(x_{0}\right) \equiv 0(\bmod M)$ ). If $\left\|b_{F}\right\|<M / \sqrt{d+1}$ then $F\left(x_{0}\right)=0$.

## Proof

Theorem 19.1.2 (Howgrave-Graham [268]) Let $F(x), X, M, b_{F}$ be as above (i.e., there is some $x_{0}$ such that $\left|x_{0}\right| \leq X$ and $F\left(x_{0}\right) \equiv 0(\bmod M)$. If $\left\|b_{F}\right\|<M / \sqrt{d+1}$ then $F\left(x_{0}\right)=0$.

Proof Recall the Cauchy-Schwarz inequality $\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)$ for $x_{i}, y_{i} \in \mathbb{R}$. Taking $x_{i} \geq 0$ and $y_{i}=1$ for $1 \leq i \leq n$ one has

$$
\sum_{i=1}^{n} x_{i} \leq \sqrt{n \sum_{i=1}^{n} x_{i}^{2}}
$$

Now

$$
\begin{aligned}
\left|F\left(x_{0}\right)\right| & =\left|\sum_{i=0}^{d} a_{i} x_{0}^{i}\right| \leq \sum_{i=0}^{d}\left|a_{i}\right|\left|x_{0}\right|^{i} \leq \sum_{i=0}^{d}\left|a_{i}\right| X^{i} \\
& \leq \sqrt{d+1}\left\|b_{F}\right\|<\sqrt{d+1} M / \sqrt{d+1}=M
\end{aligned}
$$

where the third inequality is Cauchy-Schwarz, so $-M<F\left(x_{0}\right)<M$. But $F\left(x_{0}\right) \equiv$ $0(\bmod M)$ and so $F\left(x_{0}\right)=0$.

## If $\mathrm{F}(x)$ does not satisfy the condition

For our $\mathrm{F}(x)$, if $\left|\left|b_{F}\right|\right|<\mathrm{M} / \sqrt{d+1}$ does not hold, how can we do?

They are multiples of $M$ and all have solution
$x=x_{0} \bmod M$

- Consider $d+1$ polynomials

$$
G_{i}(x)=\mathrm{M} x^{i} \text { for } 0 \leq i<d
$$

and $F(x)$.
$>$ Let $\mathcal{L}$ be defined with these $d+1$ polynomials.

- Derive a polynomial with small efficient via LLL algorithm.

If $\mathrm{F}(x)$ does not satisfy the condition

- Consider $d+1$ polynomials

$$
G_{i}(x)=\mathrm{M} x^{i} \text { for } 0 \leq i<d
$$

and $F(x)$.

- Each row of B associates with a polynomial.
$\checkmark \mathcal{L}$ is spanned by $d+1$ row vectors.



## LLL algorithm + Howgrave-Graham's theorem

Theorem 19.1.5 Let the notation be as above and let $G(x)$ be the polynomial corresponding to the first vector in the LLL-reduced basis for $L$. Set $c_{1}(d)=2^{-1 / 2}(d+1)^{-1 / d}$. If $X<$ $c_{1}(d) M^{2 / d(d+1)}$ then any root $x_{0}$ of $F(x)$ modulo $M$ such that $\left|x_{0}\right| \leq X$ satisfies $G\left(x_{0}\right)=0$ in $\mathbb{Z} . \overline{\boldsymbol{M}^{\mathbf{1} / d^{2}}}$
Proof Recall that $\underline{b}_{1}$ satisfies

$$
\left\|\underline{b}_{1}\right\| \leq 2^{(n-1) / 4} \operatorname{det}(L)^{1 / n}=2^{d / 4} M^{d /(d+1)} X^{d / 2}
$$

Why?
For $\underline{b}_{1}$ to satisfy the conditions of Howgrave-Graham's theorem (i.e., $\left\|\underline{b}_{1}\right\|<M / \sqrt{d+1}$ ) it is sufficient that

$$
2^{d / 4} M^{d /(d+1)} X^{d / 2}<M / \sqrt{d+1}
$$

This can be written as

$$
\sqrt{d+1} 2^{d / 4} X^{d / 2}<M^{1 /(d+1)}, \quad \begin{aligned}
& d=3 \\
& \\
& \text { bound is } M^{1 / 6}
\end{aligned}
$$

which is equivalent to the condition in the statement of the theorem.

## Example

Example 19.1.6 Let $M=10001$ and consider the polynomial

$$
F(x)=x^{3}+10 x^{2}+5000 x-222 .
$$

One can check that $F(x)$ is irreducible, and that $F(x)$ has the small solution $x_{0}=4$ modulo $M$. Note that $\left|x_{0}\right|<M^{1 / 6}$ so one expects to be able to find $x_{0}$ using the above method. Suppose $X=10$ is the given bound on the size of $x_{0}$. Consider the basis matrix

$$
B=\left(\begin{array}{cccc}
M & 0 & 0 & 0 \\
0 & M X & 0 & 0 \\
0 & 0 & M X^{2} & 0 \\
-222 & 5000 X & 10 X^{2} & X^{3}
\end{array}\right) .
$$

Running LLL on this matrix gives a reduced basis, the first row of which is

$$
(444,10,-2000,-2000) .
$$

The polynomial corresponding to this vector is

$$
G(x)=444+x-20 x^{2}-2 x^{3} .
$$

Running Newton's root-finding method on $G(x)$ gives the solution $x_{0}=4$.

## Can we do better?



- The bigger $X$, the better.
- Actually, LLL algorithm + Howgrave-Graham's theorem work well as long as

$$
\operatorname{det}(\mathcal{L})<M^{\operatorname{dim} \text { of } L}
$$

In the previous theorem, it is $2^{d / 4} M^{d /(d+1)} X^{d / 2}<M / \sqrt{d+1}$

- Strategies for constructing lattice $\mathcal{L}$

1. Add rows to $\mathcal{L}$ that contribute less than $M$ to the det
2. Increase the power of $M$ on the right hand side. $\operatorname{det}(\mathcal{L})<M^{\operatorname{dim}} \Rightarrow \operatorname{det}(\mathcal{L})<$ bigger modulus ${ }^{\operatorname{dim}}$

## Strategy 1

$$
B=\left(\begin{array}{ccccc}
M & 0 & \cdots & 0 & 0 \\
0 & M X & \cdots & 0 & 0 \\
\vdots & & & \vdots & \vdots \\
0 & 0 & \cdots & M X^{d-1} & 0 \\
a_{0} & a_{1} X & \cdots & a_{d-1} X^{d-1} & X^{d}
\end{array}\right)
$$

1. Add rows to $\mathcal{L}$ that contribute less than $M$ to the det

Add rows corresponding to $x^{i} F(x)$ (polynomial multiples of $F(x)$ )
$B=\left(\begin{array}{cccccc}M & 0 & 0 & 0 & 0 & 0 \\ 0 & M X & 0 & 0 & 0 & 0 \\ 0 & 0 & M X^{2} & 0 & 0 & 0 \\ -222 & 5000 X & 10 X^{2} & X^{3} & 0 & 0 \\ 0 & -222 X & 5000 X^{2} & 10 X^{3} & X^{4} & 0 \\ 0 & 0 & -222 X^{2} & 5000 X^{3} & 10 X^{4} & X^{5}\end{array}\right)$.

Exercise 19.1.8 Let $G(x)$ be a polynomial of degree $d$. Show that taking $d x$-shifts $G(x), x G(x), \ldots, x^{d-1} G(x)$ gives a method that works for $X \approx M^{1 /(2 d-1)}$.

Better bound

## Strategy 2

2. Increase the power of $M$ on the right hand side. $\operatorname{det}(\mathcal{L})<M^{\operatorname{dim}} \Rightarrow \operatorname{det}(\mathcal{L})<$ bigger modulus ${ }^{\operatorname{dim}}$

$$
M^{h-1-j} F^{j}(x) \equiv 0 \bmod M^{h-1}
$$

## Coppersmith method

Define $G_{i, j}(x)=M^{h-1-j} F^{j}(x) x^{i}$ for $0 \leq i<d, 0 \leq j<h$. Note

$$
G_{i, j}\left(x_{0}\right) \equiv 0 \bmod M^{h-1}
$$

$$
(d-1) /(d(d h-1))=\epsilon
$$

Theorem 19.1.9 (Coppersmith) Let $0<\epsilon<\min \{0.18,1 / d\}$. Let $F(x)$ be a monic polynomial of degree $d$ with one or more small roots $x_{0}$ modulo $M$ such that $\left|x_{0}\right|<\frac{1}{2} M^{1 / d-\epsilon}$. Then $x_{0}$ can be found in time, bounded by a polynomial in $d, 1 / \epsilon$ and $\log (M)$.

## Better bound

The proof is similar to the one on slide 17 and thus is omitted here.

Application to RSA

## Relaxed models

- Stereotyped messages (with partial knowledge of m )
- With partial knowledge of $p$
- With small decryption exponent d


## Stereotyped message attack

$N, e=3, c$ are known. Higher bits of $m$ are known.

$$
\begin{aligned}
& f(x)=c-\left(m_{0}+x\right)^{e} \bmod N \\
& f(x)=c-\left(m_{0}+x\right)^{3} \bmod N
\end{aligned}
$$

We can recover $x_{0}$ if $\left|x_{0}\right|<N^{1 / 3}$

## With partial knowledge of p

Theorem 19.4.2 Let $N=p q$ with $p<q<2 p$. Let $0<\epsilon<1 / 4$, and suppose $\tilde{p} \in \mathbb{N}$ is such that $|p-\tilde{p}| \leq \frac{1}{2 \sqrt{2}} N^{1 / 4-\epsilon}$. Then given $N$ and $\tilde{p}$ one can factor $N$ in time polynomial in $\log (N)$ and $1 / \epsilon$.

Let $F(x)=\tilde{p}+x$. Define $\mathrm{h}+1$ polynomials:

$$
N^{h}, N^{h-1} F(x), N^{h-2} F(x)^{2}, \ldots, N F(x)^{h-1}, F(x)^{h}, x F(x)^{h}, \ldots, x^{k-h} F(x)^{h} .
$$

Take $h \geq \max \{4,1 / 4 \epsilon\}$, the above thm holds

RSA with small decryption exponent d

$$
\begin{aligned}
& e \cdot d=1 \bmod \varphi(N) \\
\Rightarrow & e \cdot d=1+k \cdot \varphi(N) \\
\Rightarrow & k \cdot \varphi(N)+1=0 \bmod e \\
\Rightarrow & \underbrace{k} \cdot(\underbrace{N+1}_{A} \underbrace{-p-q}_{y})+1=0 \bmod e \\
f(x, y)=\cdot & (A+)+1=0 \bmod e
\end{aligned}
$$

## Bivariate case

-- Condition to remove "mod"

- $h(x, y)=\sum_{i, j} a_{i, j} x^{i} y^{j}$
$>\|h(x, y)\|^{2} \doteq \sum_{i, j}\left|a_{i, j}^{2}\right|$
Fact 4 (HG98). Let $h(x, y) \in \mathbb{Z}[x, y]$ be a polynomial which is a sum of at most $w$ monomials. Suppose that
a. $h\left(x_{0}, y_{0}\right)=0 \bmod e^{m}$ for some positive integer $m$ where $\left|x_{0}\right|<X$ and $\left|y_{0}\right|<$ $Y$, and
b. $\|h(x X, y Y)\|<e^{m} / \sqrt{w}$.

Then $h\left(x_{0}, y_{0}\right)=0$ holds over the integers.

## Construct Lattice

$$
\begin{aligned}
& g_{i, k}(x, y):=x^{i} f^{k}(x, y) e^{m-k} \quad \text { and } \quad h_{j, k}(x, y):=y^{j} f^{k}(x, y) e^{m-k} \\
& 0 \leq k \leq m, 0 \leq i \leq m-k, 0 \leq j \leq t,\left|x_{0}\right|<X=e^{\delta},\left|y_{0}\right|<\mathrm{Y}=e^{0.5}
\end{aligned}
$$

|  | 1 | $x$ | $x y$ | $x^{2}$ | $x^{2} y$ | $x^{2} y^{2}$ | $y$ | $x y^{2}$ | $x^{2} y^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & e^{2} \\ & x e^{2} \end{aligned}$ | $e^{2}$ | $e^{2} X$ |  |  |  |  |  |  |  |
| $\begin{aligned} & f e \\ & x^{2} e^{2} \end{aligned}$ | $e$ | $e A X$ | $e X Y$ | $e^{2} X^{2}$ |  |  |  |  |  |
| $x f e$ |  | $e X$ |  | $e A X^{2}$ | $e{ }^{2}{ }^{2} Y$ |  |  |  |  |
| $f^{2}$ | 1 | $2 A X$ | $2 X Y$ | $A^{2} X^{2}$ | $2 A X^{2} Y$ | $X^{2} Y^{2}$ |  |  |  |
| $y e^{2}$ |  |  |  |  |  |  | $e^{2} Y$ |  |  |
| $y f e$ |  |  | $e A X Y$ |  |  |  | $e Y$ | $e X Y^{2}$ |  |
| $y f^{2}$ | ( |  | $2 A X Y$ |  | $A^{2} X^{2} Y$ | $2 A X^{2} Y^{2}$ | $Y$ | $2 X Y^{2}$ | $\left.X^{2} Y^{3}\right)$ |

Boneh-Durfee basis matrix for $m=2, t=1$

RSA with small decryption exponent d

$$
\begin{aligned}
& k \cdot(N+1-p-q)+1=0 \bmod e \\
& \begin{aligned}
k & <N^{0.285} \Rightarrow d<N^{0.285} \\
e \cdot d & =1+k \cdot(N+1-p-q) \\
\quad & =k \cdot N+k \cdot(1-p-q)+1 \\
\Rightarrow & e \cdot d \approx k \cdot N \\
\Rightarrow & \frac{e}{N} \approx \frac{k}{d}
\end{aligned}
\end{aligned}
$$

## Conclusion

All the cryptanalysis of RSA is carried out under relaxed models.


## The bound for $\underline{b_{1}}$


(1.6) Proposition. Let $b_{1}, b_{2}, \ldots, b_{n}$ be a reduced basis for a lattice $L$ in $\mathbb{R}^{n}$, and let $b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}$ be defined as above. Then we have
(1.7)

$$
\left|b_{j}\right|^{2} \leqq 2^{i-1} \cdot\left|b_{i}^{*}\right|^{2} \quad \text { for } \quad 1 \leqq j \leqq i \leqq n,
$$

$$
\begin{equation*}
d(L) \leqq \prod_{i=1}^{n}\left|b_{i}\right| \leqq 2^{n(n-1) / 4} \cdot d(L) \tag{1.8}
\end{equation*}
$$

(1.9)

$$
\left|b_{1}\right| \leqq 2^{(n-1) / 4} \cdot d(L)^{1 / n}
$$

## back

