RSA and Coppersmith Method

2021.06.09

Outline

RSA
Relaxed models for attacking RSA
Intuition
Coppersmith method
Application to RSA

RSA

▶ p,q 为两大素数, N=pq
▶ φ(N) = (p - 1)(q - 1)
▶ 选择e, gcd(e,φ(N))=1,计算d, 满足ed=1 mod φ(N)
▶ 公钥: (N,e)
▶ 私钥: d
▶ 加密: 取m, c=m^e mod n
▶ 解密: m=c^d mod n

Attacks on the Implementation or the Mathematics.

Recover the plaintext
Recover the private key

Relaxed models

Stereotyped messages (with partial knowledge of m)
 With partial knowledge of p
 With small decryption exponent d

Intuition

Stereotyped messages $c = m^e \pmod{N}$ $m = m_0 + x_0$

"The secret key for the day is: desktop"

$$f(x) = c - (m_0 + x)^e \pmod{N}$$

x is small compared to N

Example

N, e = 3, c are known. m has 512 bits where only the least 72 bits are unknown.

$$f(x) = c - (m_0 + x)^e \mod N$$

 $f(x) = c - (m_0 + x)^3 \mod N$

f(x) has a small solution but its coefficients are not small.

Solving f(x)

► Factoring N
 ■ f(x) ≡ 0 mod p, f(x) ≡ 0 mod q
 ■ Then solving f(x) is easy

But the factorization of N is unknown

 $\blacktriangleright \text{Recall that } x \text{ is small}$

$f(x) = 0 \pmod{N} \text{ with } |x| < X$ \downarrow $g(x) = 0 \text{ over } \mathbb{Z}$

Finding integer roots of integer polynomials is **easy**: we can find roots over R using numerical analysis (e.g., Newton's method) and then round the approximations of the roots to the nearest integer.

An intuitive example

 Let N = 17*19 = 323 and let f(x) = x² + 33x + 215
 Find f(x) ≡ 0 mod N
 x₀ = 3 is a solution, but f(3) ≠ 0 over Z

Property of g(x):
1. 9f(x): multiple of
 f(x)
2. N(x + 6): multiple
 of N

Define

 $g(x) = 9f(x) - N(x+6) = 9x^2 - 26x - 3$ $f(x_0) \equiv 0 \mod N \Longrightarrow g(x_0) \equiv 0 \mod N$ $\Longrightarrow g(x_0) = 0 \text{ over } \mathbb{Z}$

g(x) has small coefficients and satisfies g(3) = 0. The root can be found using Newton's method over \mathbb{R} .

Let's build theorems for it!

Coppersmith Method

Condition to remove "mod"

- ▶ Let $M, X \in \mathbb{N}$ and $F(x) = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[x]$
- Suppose $x_0 \in \mathbb{Z}$ is a solution to $F(x) = 0 \mod M$ such that $|x_0| < X$.
- Associate with F(x) the row vector $b_F = (a_0, a_1X, a_2X^2, ..., a_dX^d)$

Theorem 19.1.2 (Howgrave-Graham [268]) Let F(x), X, M, b_F be as above (i.e., there is some x_0 such that $|x_0| \le X$ and $F(x_0) \equiv 0 \pmod{M}$). If $||b_F|| < M/\sqrt{d+1}$ then $F(x_0) = 0$.

Proof

Theorem 19.1.2 (Howgrave-Graham [268]) Let F(x), X, M, b_F be as above (i.e., there is some x_0 such that $|x_0| \le X$ and $F(x_0) \equiv 0 \pmod{M}$). If $||b_F|| < M/\sqrt{d+1}$ then $F(x_0) = 0$.

Proof Recall the Cauchy–Schwarz inequality $(\sum_{i=1}^{n} x_i y_i)^2 \le (\sum_{i=1}^{n} x_i^2)(\sum_{i=1}^{n} y_i^2)$ for $x_i, y_i \in \mathbb{R}$. Taking $x_i \ge 0$ and $y_i = 1$ for $1 \le i \le n$ one has

$$\sum_{i=1}^{n} x_i \le \sqrt{n \sum_{i=1}^{n} x_i^2}$$

Now

$$|F(x_0)| = \left| \sum_{i=0}^d a_i x_0^i \right| \le \sum_{i=0}^d |a_i| |x_0|^i \le \sum_{i=0}^d |a_i| X^i$$
$$\le \sqrt{d+1} \|b_F\| < \sqrt{d+1} M / \sqrt{d+1} = M$$

where the third inequality is Cauchy–Schwarz, so $-M < F(x_0) < M$. But $F(x_0) \equiv 0 \pmod{M}$ and so $F(x_0) = 0$.

If F(x) does not satisfy the condition

For our F(x), if $||b_F|| < M/\sqrt{d+1}$ does not hold, how can we do?

• Consider d + 1 polynomials $G_i(x) = Mx^i$ for $0 \le i < d$

They are multiples of M and all have solution $x = x_0 \mod M$

and F(x).

• Let \mathcal{L} be defined with these d + 1 polynomials.

Derive a polynomial with small efficient via LLL algorithm.

If F(x) does not satisfy the condition

 Consider d + 1 polynomials
 G_i(x) = Mxⁱ for 0 ≤ i < d
 and F(x).

 Each row of B associates with a polynomial.

 L is spanned by d + 1 row vectors.

$$B = \begin{pmatrix} M & 0 & \cdots & 0 & 0 \\ 0 & MX & \cdots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & MX^{d-1} & 0 \\ a_0 & a_1X & \cdots & a_{d-1}X^{d-1} & X^d \end{pmatrix}$$

LLL algorithm + Howgrave-Graham's theorem

Theorem 19.1.5 Let the notation be as above and let G(x) be the polynomial corresponding to the first vector in the LLL-reduced basis for L. Set $c_1(d) = 2^{-1/2}(d+1)^{-1/d}$. If $X < c_1(d)M^{2/d(d+1)}$ then any root x_0 of F(x) modulo M such that $|x_0| \le X$ satisfies $G(x_0) = 0$ in \mathbb{Z} . M^{1/d^2}

Proof Recall that \underline{b}_1 satisfies

$$|\underline{b}_1|| \le 2^{(n-1)/4} \det(L)^{1/n} = 2^{d/4} M^{d/(d+1)} X^{d/2}.$$

Why?

For \underline{b}_1 to satisfy the conditions of Howgrave-Graham's theorem (i.e., $\|\underline{b}_1\| < M/\sqrt{d+1}$) it is sufficient that

$$2^{d/4} M^{d/(d+1)} X^{d/2} < M/\sqrt{d+1}.$$

This can be written as

$$\sqrt{d+1}2^{d/4}X^{d/2} < M^{1/(d+1)}$$

d = 3, bound is $M^{1/6}$

which is equivalent to the condition in the statement of the theorem.

Example

Example 19.1.6 Let M = 10001 and consider the polynomial

$$F(x) = x^3 + 10x^2 + 5000x - 222.$$

One can check that F(x) is irreducible, and that F(x) has the small solution $x_0 = 4$ modulo M. Note that $|x_0| < M^{1/6}$ so one expects to be able to find x_0 using the above method. Suppose X = 10 is the given bound on the size of x_0 . Consider the basis matrix

$$B = \begin{pmatrix} M & 0 & 0 & 0 \\ 0 & MX & 0 & 0 \\ 0 & 0 & MX^2 & 0 \\ -222 & 5000X & 10X^2 & X^3 \end{pmatrix}.$$

Running LLL on this matrix gives a reduced basis, the first row of which is

$$(444, 10, -2000, -2000).$$

The polynomial corresponding to this vector is

$$G(x) = 444 + x - 20x^2 - 2x^3.$$

Running Newton's root-finding method on G(x) gives the solution $x_0 = 4$.

Can we do better?

▶ The bigger X, the better.

Actually, LLL algorithm + Howgrave-Graham's theorem work well as long as det(L) < M^{dim of L}

In the previous theorem, it is $2^{d/4}M^{d/(d+1)}X^{d/2} < M/\sqrt{d+1}$

- Strategies for constructing lattice L
 - 1. Add rows to $\mathcal L$ that contribute less than M to the det
 - 2. Increase the power of M on the right hand side. $det(\mathcal{L}) < M^{dim} \implies det(\mathcal{L}) < bigger modulus^{dim}$

Strategy 1

$$B = \begin{pmatrix} M & 0 & \cdots & 0 & 0 \\ 0 & MX & \cdots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & MX^{d-1} & 0 \\ a_0 & a_1X & \cdots & a_{d-1}X^{d-1} & X^d \end{pmatrix}$$

1. Add rows to \mathcal{L} that contribute less than M to the det Add rows corresponding to $x^i F(x)$ (polynomial multiples of F(x))

$$B = \begin{pmatrix} M & 0 & 0 & 0 & 0 & 0 \\ 0 & MX & 0 & 0 & 0 & 0 \\ 0 & 0 & MX^2 & 0 & 0 & 0 \\ -222 & 5000X & 10X^2 & X^3 & 0 & 0 \\ 0 & -222X & 5000X^2 & 10X^3 & X^4 & 0 \\ 0 & 0 & -222X^2 & 5000X^3 & 10X^4 & X^5 \end{pmatrix}.$$

Exercise 19.1.8 Let G(x) be a polynomial of degree d. Show that taking d x-shifts $G(x), xG(x), \ldots, x^{d-1}G(x)$ gives a method that works for $X \approx M_{\wedge}^{1/(2d-1)}$.

Better bound

Strategy 2

2. Increase the power of M on the right hand side. $det(\mathcal{L}) < M^{dim} \implies det(\mathcal{L}) < bigger modulus^{dim}$

 $M^{h-1-j}F^j(x) \equiv 0 \mod M^{h-1}$

Coppersmith method

Define $G_{i,j}(x) = M^{h-1-j}F^j(x)x^i$ for $0 \le i < d, 0 \le j < h$. Note $G_{i,j}(x_0) \equiv 0 \mod M^{h-1}$

 $(d-1)/(d(dh-1)) = \epsilon$

Theorem 19.1.9 (*Coppersmith*) Let $0 < \epsilon < \min\{0.18, 1/d\}$. Let F(x) be a monic polynomial of degree d with one or more small roots x_0 modulo M such that $|x_0| < \frac{1}{2}M^{1/d-\epsilon}$. Then x_0 can be found in time, bounded by a polynomial in $d, 1/\epsilon$ and $\log(M)$.

Better bound

The proof is similar to the one on <u>slide 17</u> and thus is omitted here.

Application to RSA

Relaxed models

Stereotyped messages (with partial knowledge of m)
 With partial knowledge of p
 With small decryption exponent d

Stereotyped message attack

N, e = 3, c are known. Higher bits of m are known.

 $f(x) = c - (m_0 + x)^e \mod N$ $f(x) = c - (m_0 + x)^3 \mod N$

We can recover x_0 if $|x_0| < N^{1/3}$

With partial knowledge of p

Theorem 19.4.2 Let N = pq with p < q < 2p. Let $0 < \epsilon < 1/4$, and suppose $\tilde{p} \in \mathbb{N}$ is such that $|p - \tilde{p}| \leq \frac{1}{2\sqrt{2}}N^{1/4-\epsilon}$. Then given N and \tilde{p} one can factor N in time polynomial in $\log(N)$ and $1/\epsilon$.

Let $F(x) = \tilde{p} + x$. Define h+1 polynomials:

$$N^{h}, N^{h-1}F(x), N^{h-2}F(x)^{2}, \dots, NF(x)^{h-1}, F(x)^{h}, xF(x)^{h}, \dots, x^{k-h}F(x)^{h}.$$

Take $h \ge \max\{4, 1/4\epsilon\}$, the above thm holds

RSA with small decryption exponent d

 $e \cdot d = 1 \mod \varphi(N)$ $\Rightarrow e \cdot d = 1 + k \cdot \varphi(N)$ $\implies k \cdot \varphi(N) + 1 = 0 \mod e$ $\implies k \cdot (N+1-p-q) + 1 = 0 \mod e$ x A $f(x,y) = \mathbf{x} \cdot (\mathbf{A} + \mathbf{y}) + 1 = 0 \mod \mathbf{e}$

Bivariate case -- Condition to remove "mod" $h(x,y) = \sum_{i,j} a_{i,j} x^i y^j$ $||h(x,y)||^2 \doteq \sum_{i,j} |a_{i,j}^2|$

Fact 4 (HG98). Let $h(x, y) \in \mathbb{Z}[x, y]$ be a polynomial which is a sum of at most w monomials. Suppose that

- a. $h(x_0, y_0) = 0 \mod e^m$ for some positive integer m where $|x_0| < X$ and $|y_0| < Y$, and
- b. $||h(xX, yY)|| < e^m / \sqrt{w}$.

Then $h(x_0, y_0) = 0$ holds over the integers.

Construct Lattice

$$g_{i,k}(x,y) := x^i f^k(x,y) e^{m-k} \text{ and } h_{j,k}(x,y) := y^j f^k(x,y) e^{m-k}.$$

$$0 \le k \le m, 0 \le i \le m-k, 0 \le j \le t, |x_0| < X = e^{\delta}, |y_0| < Y = e^{0.5}$$

	1	x	xy	x^2	x^2y	x^2y^2	y	xy^2	x^2y^3
e^2	e^2								
xe^2	($e^2 X$							
fe	e	eAX	eXY						
x^2e^2				$e^2 X^2$					
xfe		eX		eAX^2	eX^2Y				
f^2	1	2AX	2XY	A^2X^2	$2AX^2Y$	X^2Y^2			
ye^2							e^2Y		
yfe			eAXY				eY	eXY^2	
yf^2			2AXY		$A^2 X^2 Y$	$2AX^2Y^2$	Y	$2XY^2$	X^2Y^3

Boneh-Durfee basis matrix for m = 2, t = 1

RSA with small decryption exponent d

$$k \cdot (N + 1 - p - q) + 1 = 0 \mod e$$

 $k < N^{0.285} \Longrightarrow d < N^{0.285}$

$$e \cdot d = 1 + k \cdot (N + 1 - p - q)$$

= $k \cdot N + k \cdot (1 - p - q) + 1$
 $\implies e \cdot d \approx k \cdot N$
 $\implies \frac{e}{N} \approx \frac{k}{d}$

Conclusion

All the cryptanalysis of RSA is carried out under relaxed models.

$$f(x_0) = 0 \pmod{N} \text{ with } |x_0| < X$$

$$\downarrow$$
generate $f_i \text{ s.t. } f_i(x_0) = 0 \pmod{N^m}$

$$\downarrow$$

$$B = \begin{pmatrix} f_i(xX) \\ \vdots \\ f_n(xX) \end{pmatrix}$$

$$\downarrow$$

$$LLL$$

$$\downarrow$$

$$B' = \begin{pmatrix} b_1 = g(xX) \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$g(x_0) = 0 \pmod{N^m}$$

$$\|g(xX)\| < \frac{N^m}{\sqrt{n}}$$

The bound for $\underline{b_1}$

(1.6) **Proposition.** Let $b_1, b_2, ..., b_n$ be a reduced basis for a lattice L in \mathbb{R}^n , and let $b_1^*, b_2^*, ..., b_n^*$ be defined as above. Then we have

,

(1.7)
$$|b_j|^2 \leq 2^{i-1} \cdot |b_i^*|^2 \quad \text{for} \quad 1 \leq j \leq i \leq n,$$

(1.8)
$$d(L) \leq \prod_{i=1}^{n} |b_i| \leq 2^{n(n-1)/4} \cdot d(L)$$

(1.9)
$$|b_1| \leq 2^{(n-1)/4} \cdot d(L)^{1/n}$$

back