
Permutation-based Crypto

2021.04.21

Symmetric cryptographic
primitives

❑Block encryption: CBC, …

Symmetric cryptographic
primitives

❑Block encryption: CBC, …

❑Stream cipher
o Synchronous: OFB,…

The key stream is independent of the Plaintext/Ciphertext.

Symmetric cryptographic
primitives

❑Block encryption: CBC, …

❑Stream cipher
o Synchronous: OFB,…

o Self-synchronizing: CFB, …

The key stream is dependent of the Plaintext/Ciphertext.

Symmetric cryptographic
primitives

❑Block cipher: DES, AES

❑Stream cipher
o Synchronous: OFB,…

o Self-synchronizing: CFB, …

❑Hash functions makes use of block ciphers

o SHA-1, SHA-2, Whirlpool, RipeMD,…

o HMAC, MGF1, …

❑Block cipher: DES, AES

❑Stream cipher
o Synchronous: OFB,…

o Self-synchronizing: CFB, …

❑Hash functions makes use of block ciphers

o SHA-1, SHA-2, Whirlpool, RipeMD,…

o HMAC, MGF1, …

❑MAC: CMAC, …

If mn is a complete block
then m′n = k1 ⊕ mn

else m′n = k2 ⊕ (mn || 10...0).

Symmetric cryptographic
primitives

❑Block cipher: DES, AES

❑Stream cipher
o Synchronous: OFB,…

o Self-synchronizing: CFB, …

❑Hash functions makes use of block ciphers

o SHA-1, SHA-2, Whirlpool, RipeMD,…

o HMAC, MGF1, …

❑MAC: CMAC

❑Authenticated encryption: GCM

Symmetric cryptographic
primitives

❑Block encryption: CBC, …

❑Stream cipher
o Synchronous: OFB,…

o Self-synchronizing: CFB, …

❑Hash functions makes use of block ciphers

o SHA-1, SHA-2, Whirlpool, RipeMD,…

o HMAC, MGF1, …

❑MAC: CMAC

❑Authenticated encryption: GCM, OCB, …

Modern-day cryptography is
block-cipher centric

Structure of a block cipher

Key
Schedule

Data
Path

Expan
ed
key

Key Data in

Data out

Structure of a block cipher (inverse)

Key
Schedule

Data
Path

Expan
ed
key

Key Data out

Data in

When is the inverse block cipher needed?

❑ Block encryption: CBC, …

❑ Stream cipher
o Synchronous: OFB,…

o Self-synchronizing: CFB, …

❑ Hash functions makes use of block ciphers

o SHA-1, SHA-2, Whirlpool, RipeMD,…

o HMAC, MGF1, …

❑ MAC: CMAC

❑ Authenticated encryption: GCM, OCB, …

Indicated in red:

So a block cipher without inverse can do a lot!

Look deep

KS Round DP Round

Key Data in

Data out

KS Round DP Round

KS Round DP Round

KS Round DP Round

KS Round DP Round

Look deep：n-bit block
cipher with k-bit key

b-bit permutation with b = n+k

❑ Iterate an invertible round
function

❑ Efficient inverse

❑ No diffusion from data part
to key part

Take hashing as an example:
compression function

KS Round DP Round

M[i] Chaining value i

Chaining value i+1

KS Round DP Round

KS Round DP Round

KS Round DP Round

KS Round DP Round

⊞

Take hashing as an example:
compression function

KS Round DP Round

M[i] Chaining value i

Chaining value i+1

KS Round DP Round

KS Round DP Round

KS Round DP Round

KS Round DP Round

⊞Removing diffusion restriction

Simplify the view: iterated perm

Round

Output

Round

Round

Round

Round

⊞

Left input Right input

BC without inverse: wide perm

❑ Applies to all modes where
inverse is not needed

❑ Do not need a separate key
schedule

❑ n-bit block cipher -> b-bit
permutation
o b=n+k

❑ Permutation as a generalization
of a block cipher

Permutation-based Crypto

Permutation-based construction:
Sponge

❑ f: a b-bit permutation with b = r + c
o Efficiency: process an r-bit block per call to f

o Security: provably resists generic attacks up to 2c/2

❑ Trade-off between r and c can be made.

output

Security of Sponge

❑ Generic security:
o Assume f is chosen randomly

o Resist against generic attacks

o Construction as sound as theoretically possible

❑ For a specific choice of f
o Security proof is infeasible

o Design with attacks in mind

o Security based on absence of attacks despite public
scrutiny

Usage of Sponge

01

02

03

04

05

Sponge

Hash function

Mask generation
function (MGF)

MAC

Stream encryption

Authenticated encryption (AE)

Usage of Sponge: Hashing

Usage of Sponge: Mask generating
function

Usage of Sponge: Mask generating
function

Usage of Sponge: MAC generation

Compare with MD construction

Given (M1, Tag1)

H2

Key||M1

m0

F

m1

F

M2

F

m2

IV H0 H1
Tag1

H3H1H0IV
IV’=Tag1

H2

Key||M1

m0

F

m1

F

M2

F

m2

IV H0 H1

Key||M1

m0

F

m1

F

M2

F

m2 m3

M2

m4

F
H4

F

Compare with MD construction

M2

Without knowing Key, we
could construct (M1||M2, Tag2)
which is a valid forgery.

Tag1

Tag2

We cannot feed (K||M) directly into a MD hash for
generating MAC.

Usage of Sponge: MAC generation

We can feed (K||M) directly into a Sponge hash for
generating MAC. Why?

Usage of Sponge: encryption

As a stream cipher

Usage of Sponge:
authenticated encryption

A variant of Sponge for
authenticated encryption

The Duplex construction
 Two additional parameters ℓ0, ℓ1
 Generic security equivalent to that of sponge

Permutation vs. Block ciphers

Hash functions based on Sponge

Hash
function

designers ref State size

Keccak Bertoni, Daemen,
Peeters, Van Assche

SHA-3 (2008) 25, 50, 100,
200, 400, 800,
1600

Quark Aumasson, Henzen,
Meier, Naya-
Plasencia

CHEC 2010 136, 176, 256

Photon Guo, Peyrin,
Poschmann

Crypto 2011 100, 144, 196,
256, 288

Spongent Bogdanov, Knezevic,
Leander, Toz, Varici,
Verbauwhede

CHES 2011 88, 136, 176,
248, 320

A selection of Sponge hash functions

State sizes of hash functions
❑ Small state -> low area

❑ Target security strength c/2

❑ Block cipher-based
o Block size n >= c

o Message block length (key size) k >=n

o Feedforward: n

o Total state size >= 3c

❑ Sponge-based
o Permutation width: b = c + r

o r can be as small as 1 byte

o Total state size >= c + 8

With the same state
size, block cipher based

schemes (MAC, AE)
may have higher

throughput.

Other features

❑ Block cipher-based
o Pre-computation of key schedule

▪ Storing expanded key cost memory

▪ May be prohibitive in resource-constrained devices

❑ Sponge-based
o Diffusion across full state

o Flexibility in choice of rate/capacity

Keyed Sponge

❑ Distinguishing vulnerability in keyed vs unkeyed
modes
o in keyed modes attacker has less power

o allows decreasing number of rounds in permutation

❑ Rate/capacity trade-off
o Allows full-state absorption

❑ Introducing dedicated variants
o MAC computation

o authenticated encryption

Full-state Keyed Sponge

KECCAK (SHA-3)

NIST standards of Secure Hash
Algorithm

❑ The complexity of the 2017 real collision of SHA-1
remains the same as 263 as for the 2005 breakthrough.

Out of the hash function crisis

❑ Trust in established hash functions was crumbling
o Use of modular addition, rotation, xor

o Adoption of MD construction

o SHA-2 is based on the same principles of SHA-1

❑ 2007: NIST calls for SHA-3
o Similar to AES contest

SHA-3 contest

❑ Open competition organized by NIST
o NIST provides a forum

o scientific community contributes: designs, attacks,
implementations, comparisons

o NIST draws conclusions and decides

❑ Goal: replacement for the SHA-2 family
o 224, 256, 384 and 512-bit output sizes

o other output sizes are optional

❑ Requirements
o security levels specified for traditional attacks

o each submission must have
▪ complete documentation, including design rationale

▪ reference and optimized implementations in C

❑ The ongoing LWC competition follow the same way

KECCAK permutation: Keccak-f

𝜌

❑ Lane level rotations

𝜋

❑ Permutation on lanes

𝜒

❑5-bit S-boxes, nonlinear operation on
rows

𝜄

❑ adding a round constant to A[0,0], to
destroy the symmetry.

Keccak-f

Internal state A: a 5 × 5 array of 64-bit lanes

KECCAK instances

❑ KECCAK versions
o KECCAK-n, n =224/256/384/512 and c = 2n, d = n.

❑ SHA-3 versions
o SHA3-n, n =224/256/384/512 and c = 2n, d = n.

o SHAKEn (eXtendable Output Functions, XOFs)
▪ (SHAKE = SHA + KEccak)

▪ n =128/256, c = 2n, d ≤ 2n.

Reasons for choosing Keccak by NIST

❑ Simple and elegant design

❑ Flexibility in choosing parameters

❑ Good performance in software (not as good as SHA-2)

❑ Excellent performance in hardware (better than SHA-
2!)

❑ Built-in authenticated-encryption mode

❑ Different design than SHA-2

Other Permutation-based
Crypto

Other schemes related to KECCAK

❑ The KECCAK-p permutations are derived from the
KECCAK-f permutations and have a tunable number of
rounds.

NIST Lightweight Cryptography
(LWC) Project

❑ Initiated in 2013

❑ To address growing industry need for security in
resource constrained devices
o Applications: Health tracking, Asset tracking (RFID),

autonomous cars etc.

❑ To find new cryptographic primitives for constrained
devices
o To gather industry feedback on suitability of current crypto

standards for constrained devices

o To create standards for the use of Lightweight cryptography

✓ Authenticated encryption with associated data (AEAD)
✓ Hash functions (option)

Round 2 candidates of LWC

Half of them are perm-based

Round 3 candidates of LWC

6 out of 10 are perm-based

Summary

❑ Permutations
o New primitive

o More flexible modes than with block ciphers

❑ Permutation-based keyed modes
o Efficiency can be boosted

▪ Bigger rate

▪ Fewer rounds

❑ Trends
o Design various permutations with different goal

in mind

