Permutation-based Crypto

2021.04.21

Symmeftric cryptographic
primitives
0 Block encryption: CBC, ...

L P . P L P
| Initial Vector (IV) }_)% % %
K-> Ex(Py) K-> Ex(Py) K-> Ex(P3)
) { |

o]] o]

Symmeftric cryptographic
primitives
0 Block encryption: CBC, ...

a Stream cipher
o Synchronous: OFB,...

Initial Vector (IV)

!)

K =i By K-> Ex
I

w H% o Hf o H%
C, C C;

Y
-

The key stream is independent of the Plaintext/Ciphertext.

Symmeftric cryptographic
primitives
0 Block encryption: CBC, ...

a Stream cipher
o Synchronous: OFB,...
o Self-synchronizing: CFB, ...

| Initial Vector (IV)|

¢ v

K o K-> K > Ey

: }—>$ }->$ Hf

| |
The key s‘rream |s dependent of the Plam'rex‘r/Cnpher'rex’r

Symmetric cryptographic
primitives

Mo M M M3

B L
IV H, H H,

>
Hs

a Hash functions makes use of b

D

h(W7)

ock ciphers

o SHA-1, SHA-2, Whirlpool, RipeMD,...

o HMAC, MGF1, ..

Symmeftric cryptographic
primifives

m
If m,, is a complete block J: ’ \lf
then m'n =k, ®&m, k—> E —P Derive 1
Tweak
elsem’ =k, ® (m, || 10...0). k<: -
m, m, n,
v i ;[

k—> E k—p> E k—p> E

L L)
aMAC: CMAC, ...

Symmeftric cryptographic
primi’rives

I
I
¥
3
T

C:J C'D =)

0 Authenticated encr'ypflon GCM

Modern-day cryptography is
block-cipher centric

0 Block encryption: CBC, ...

a Stream cipher
o Synchronous: OFB,...
o Self-synchronizing: CFB, ...
0 Hash functions makes use of block ciphers
o SHA-1, SHA-2, Whirlpool, RipeMD,...
o HMAC, MGF1, ...
aMAC: CMAC

0 Authenticated encryption: GCM, OCB, ..

Structure of a block cipher
Key Data in

; ;

Expan

Key |key Data
Schedule Path

:

Data out

Structure of a block cipher (inverse)
Key Data out

; i

Expan

Key |key Data
Schedule Path

]

Data in

When is the inverse block cipher needed?

Indicated in red:
a Block encryption: CBC, ...
0 Stream cipher

o Synchronous: OFB,...
o Self-synchronizing: CFB, ...

0 Hash functions makes use of block ciphers
o SHA-1, SHA-2, Whirlpool, RipeMD,...
o HMAC, MGF1, ..

0 MAC: CMAC
0 Authenticated encryption: GCM, OCB, ...

So a block cipher without inverse can do a loft!

Look deep

Key

Data in

;

KS Round

;

¥

DP Round

KS Round

¥

¥

DP Round

KS Round

¥

¥

DP Round

KS Round

¥

¥

DP Round

KS Round

¥

DP Round

Data out

Look deep: n-bit block
cipher with k-bit key

b-bit permutation with b = n+k Key bata
. . v L 2

0 Iterate an invertible round KS Round |——+{DP Round

fUhCT'On KS Riound — DP Rfund

Eff . 1- . KS R*ound — DP R:und

0 icient inverse e g ==
. . ; ¥

H NO dlffu5|0n fr'Ol’n dClTC(pC(r'T KS Round [=—> DP Round
|

to key part parh

Take hashing as an example:

compression function
M[i] Chaining value i

; ;

KS Round [DP Round
KS I:ound — DP Rtund
KS I;ound — DP Rtund
KS I:ound — DP Rtund
KS I:ound — DP R+ound

;

¥ Chaining value i+1

<

Take hashing as an example:
compression function

M[i] Chaining value i
KS Rlound <« DP Rlound
KS R*ound <> DP Rtund
KS I;ound <« DP Rtund
KS I;ound <« DP Rtund
KS I:ound <« DP R}und

Removing diffusion restriction

¥ Chaining value i+1

Simplify the view: iterated perm
Left input l Right input

Round
¥
Round
¥
Round
¥
Round
¥
Round

;

¥ Output

BC without inverse: wide perm

0 Applies to all modes where Left input | Right input |
inverse is not needed —

0 Do not need a separate key Round
schedule Rczund

a n-bit block cipher -> b-bit R
permutation R
o b=n+k i

' . . ¥ Output
0 Permutation as a generalization

of a block cipher

Permutation-based Crypto

Permutation-based construction:
Sponge

A
pad | |- d
I
r 0 N o> : -
I
|
|
1
|

Y

Y

Y

/ f f f f f

> > > >
c > > > £

/ _/ _/ Y _/
absofbhﬁg:squeethg

B

o

sponge
0 f: a b-bit permutation withb =r + ¢
o Efficiency: process an r-bit block per call to f
o Security: provably resists generic attacks up to 2¢/2

Q Trade-off between r and ¢ can be made.

Security of Sponge

a Generic security:
o Assume f is chosen randomly
o Resist against generic attacks
o Construction as sound as theoretically possible

0 For a specific choice of f
o Security proof is infeasible
o Design with attacks in mind

o Security based on absence of attacks despite public
scrutiny

Usage of Sponge

i) Hash function

Mask generation
function (MGF)

El MAC

Sponge g=

79 Stream encryption

SN Authenticated encryption (AE)

Usage of Sponge: Hashing

digest

A

: BE
Y M) :) M

|

|

|

|

I .o

|

|

pad

, Lm\“
rl |0 [—®

e e

Y
Y

A
Y
Y

\ flo 1 Y S
/
c|]0 = o > = I . > —
_/ _/ _/ | _/ _J
absorbing : squeezing
sponge

Security margin
» Collision: min(2¢/2, 29/2)
> Preimage: min(2¢/2,29)
» Second Preimage: min(2¢/2, 29)

Usage of Sponge: Mask generating

function
Var.-length input Variable-length output
L0 dnlnly Lol
O |FL|f|~ fL Ifl |f|~ __|f
</ U - U Y /

Usage of Sponge: Mask generating

function
Var.-length input Variable-length output
L0 dnlnly Lol
O |FL|f|~ fL Ifl |f|~ __|f
</ U - U Y /

Usage of Sponge: MAC generation

Key Padded message MAC
X i
oI FFL] Fl - T Ff
- > —> —» —>
N AN N N AN

Compare with MD construction

e, Given (M, Tog)

4\ T ——
_JFLAFLJFL
W, TO)EH, H, a9

Compare with MD construction

” Without knowing Key, we

could construct (M;||M,, Tag,)
which is a valid forgery.

4\ T ——
|WFTE o g

o H — H,
IV'=Ta
VR R e PR e
ﬁ/

M

2
We cannot feed (K||M) directly into a MD hash for
generating MAC.

Usage of Sponge: MAC generation

Key Padded message MAC
X i
oI FFL] Fl - T Ff
- > —> —» —>
N AN N N AN

We can feed (K||M) directly into a Sponge hash for
generating MAC. Why?

Usage of Sponge: encryption

Co
K|N
IZ()
A \ N
{10
X /
cltob—s>» ——m——» ——>» ——>» —>»

_/ _/ _/ _/
absorbing : squeezing

As a stream cipher

Usage of Sponge:
authenticated encryption

Absorbing and squeezing

A variant of Sponge for
authenticated encryption

oJ) Z[) 01 Zl g2 ZZ
A A A
d W d Je d e
,\ pad) (Ua) | (ead) (Lp6) | (ead) (12
r{]0 é > é > é’ >
f / i
X
C 0 > > >
v \—/ —/ —/
init. duplexing duplexing duplexing

The Duplex construction
O Two additional parameters ¢, ¢4
O Generic security equivalent to that of sponge

Permutation vs. Block ciphers

Hash functions based on Sponge

A selection of Sponge hash functions

Hash designers ref
function

Keccak Bertoni, Daemen, SHA-3 (2008) 25, 50, 100,

Peeters, Van Assche 200, 400, 800,
1600

Quark Aumasson, Henzen, CHEC 2010 136, 176, 256
Meier, Naya-
Plasencia

Photon Guo, Peyrin, Crypto 2011 100, 144, 196,
Poschmann 256, 288

Spongent Bogdanov, Knezevic, = CHES 2011 88, 136, 176,
Leander, Toz, Varici, 248, 320

Verbauwhede

State sizes of hash functions

0 Small state -> low area
0 Target security strength c/2
0 Block cipher-based

o Block size n»>=c¢

H;_1 CP H

v

o Message block length (key size) k >=n

o Feedforward: n
o Total state size >= 3c

0 Sponge-based {

o Permutation width: b=c+r
o r can be as small as 1 byte
o Total state size >=c + 8

With the same state
size, block cipher based
schemes (MAC, AE)
may have higher
throughput.

Other features
0 Block cipher-based

o Pre-computation of key schedule
= Storing expanded key cost memory
= May be prohibitive in resource-constrained devices

0 Sponge-based
o Diffusion across full state
o Flexibility in choice of rate/capacity

Keyed Sponge

a Distinguishing vulnerability in keyed vs unkeyed
modes
o in keyed modes attacker has less power
o allows decreasing number of rounds in permutation

0 Rate/capacity trade-off
o Allows full-state absorption

0 Introducing dedicated variants
o MAC computation
o authenticated encryption

Full-state Keyed Sponge

M ?
padbl eee | left. |
| ! } T ¥ 7
M! M? M™ Z1 coe glz/rl=1 7lz/7]
T — " N ~—] ~ l —]
"IT] . |
L=
| —b P—& Pre- p P P
i v .
e T
Vi:z <

| |
o |
I |
| =]|
| 1
[T1<=] |
| | rew
l ¢ X |
| < | |
| |
[|

initialize duplexing duplexing duplexing

KECCAK (SHA-3)

NIST standards of Secure Hash

Algorithm
Theoretical
collision Attacks Real collisions of

on SHA-1 SHA-1!

SHA-1| "=

SHA-2

SHA-3

0 The complexity of the 2017 real collision of SHA-1
remains the same as 2°3 as for the 2005 breakthrough.

Out of the hash function crisis

a Trust in established hash functions was crumbling
o Use of modular addition, rotation, xor
o Adoption of MD construction
o SHA-2 is based on the same principles of SHA-1

a 2007: NIST calls for SHA-3
o Similar to AES contest

SHA-3 contest

0 Open competition organized by NIST
o NIST provides a forum

o scientific community contributes: designs, attacks,
implementations, comparisons

o NIST draws conclusions and decides

0 Goal: replacement for the SHA-2 family
o 224,256, 384 and 512-bit output sizes
o other output sizes are optional

0 Requirements
o security levels specified for traditional attacks

o each submission must have
= complete documentation, including design rationale
= reference and optimized implementations in C

0 The ongoing LWC competition follow the same way

KECCAK permutation: Keccak-f

@ 1600 bits: seen as a 5 X 5 array
of 64-bit lanes,
Ax,v],0 <x,y <5

@ 24 rounds

Lane

@ cach round R consists of five
steps:

Column

R = LO:XfDﬂ'O{)Ofg

@ Y : the only nonlinear operation,
a 5-bit Sbox applies to each row.

dLane level rotations

ANEONERNEANEA N

Rotation offsets r[x, y]

27
20

39

14

28

55
25

21

56

62

43

15
61

44

10
45

36

41

18

y=20

},’ —

y=1

I

2 Permutation on lanes

1,0 | 20| 30 | 40 /
121 |31 4.1

Ay, 2 xx+ 3%y = Alx,y|

=

X

0 b-bit S-boxes, nonlinear operation on
rows

0 adding a round constant to A[0,0], to
destroy the symmetry.

Keccak-f

Internal state A: a 5 x 5 array of 64-bit lanes

0 step Clx] = A[x,0] @ A[x, 1] & A[x, 2] ® A[x, 3] © A[x, 4]
Dix| =Cx—-1]® (Cx+1] « 1)
Alx.y] = Alx.y| ® D[]
pstep Afx,y] = Ax,y] < rx,)]

- The constants 7|x, y| are the rotation offsets.

mstep Ay, 2 xx + 3 xy] = A[x,)]
\step Ape,y] = Ayl @ ((Alx+ 1,0 &Alx + 2, 5])
v step A[0,0] = 4[0,0] & RC

- RCi] are the round constants.

KECCAK instances

a0 KECCAK versions
o KECCAK-n n=224/256/384/512 and c = 2n, d = n.

a SHA-3 versions
o SHA3-n, n=224/256/384/512 and ¢ = 2n, d = n.

o SHAKEn (eXtendable Output Functions, XOFs)
= (SHAKE = SHA + KEccak)
= n=128/256,c=2n,d < 2n.

Reasons for choosing Keccak by NIST

0 Simple and elegant design
0 Flexibility in choosing parameters
0 Good performance in software (not as good as SHA-2)

0 Excellent performance in hardware (better than SHA-
21)

a Built-in authenticated-encryption mode
0 Different design than SHA-2

Other Permutation-based
Crypto

Other schemes related to KECCAK

0 The KECCAK-p permutations are derived from the
KECCAK-f permutations and have a tunable number of

rounds.
Underly1
haet ‘Vl_ng Structure b ny Schemes Category
permutation
1600 24 Hash
KEccak challenge instances functions
Sponge .
1600 12 KangarooTwelve
KEccak-p .
1600 24 MAC
400/200 20/18 | Ketje
Duplex : \ — AE
1600/800 12 Keyak
Farfalle 1600 6 Kravatte PRF

NIST Lightweight Cryptography
(LWC) Project

a Initiated in 2013

O To address growing industry need for security in
resource constrained devices

o Applications: Health tracking, Asset tracking (RFID),
autonomous cars efc.

0 To find new cryptographic primitives for constrained
devices

o To gather industry feedback on suitability of current crypto
standards for constrained devices

o To create standards for the use of Lightweight cryptography

v' Authenticated encryption with associated data (AEAD

v" Hash functions (option)

Round 2 candidates of LWC

COMET SAEAES

Elephant

Block cipher or
tweakable block
cipher

mixFeed
ForkAE HyENA

WAGE

\
\
Spook
\

Permutation

GIFT-COFB Pyjamask

SPIX go0c

LOTUS-AEAD & LOCUS-AEAD

ASCON
DryGASCON

Xoodyak SPARKLE
PHOTON-Beetle = KNOT

Gimli Subterranean 2.0
ORANGE

Romulus

SUNDAE-GIFT .
Saturnin

TinyJAMBU

SKINNY-AEAD &
SKINNY-HASH

ESTATE

AEAD + hashing

Grain-128AEAD

Stream cipher

Half of them are perm-based

Round 3 candidates of LWC

COMET SAEAES

Elephant

Block cipher or
tweakable block
cipher

mixFeed
ForkAE HyENA

WAGE

\
\
Spook
\

Permutation

GIFT-COFB Pyjamask

SPIX go0c

LOTUS-AEAD & LOCUS-AEAD

ASCON
DryGASCON

Xoodyak SPARKLE
PHOTON-Beetle = KNOT

Gimli Subterranean 2.0
ORANGE

Romulus

SUNDAE-GIFT .
Saturnin

TinyJAMBU

SKINNY-AEAD &
SKINNY-HASH

ESTATE

AEAD + hashing

Grain-128AEAD

Stream cipher

6 out of 10 are perm-based

Summary

0 Permutations

o New primitive

o More flexible modes than with block ciphers
0 Permutation-based keyed modes

o Efficiency can be boosted
= Bigger rate
= Fewer rounds

a Trends

o Design various permutations with different goal
in mind

