Representation of Boolean and Vectorial Boolean Function

1 Representation of Elements of Finite Field

2 Representation of Boolean Function

1 Representation of Elements of Finite Field

2 Representation of Boolean Function

Theorem

The residue class ring $\mathbb{Z} / p \mathbb{Z}$ is a finite field with p elements under the addition and multiplication modulo p, where p is a prime.

Theorem

The residue class ring $\mathbb{Z} / p \mathbb{Z}$ is a finite field with p elements under the addition and multiplication modulo p, where p is a prime.

Note that if p is not a prime, $\mathbb{Z} / p \mathbb{Z}$ is not a field, but a ring including zero divisor.

Theorem

The residue class ring $\mathbb{Z} / p \mathbb{Z}$ is a finite field with p elements under the addition and multiplication modulo p, where p is a prime.

Note that if p is not a prime, $\mathbb{Z} / p \mathbb{Z}$ is not a field, but a ring including zero divisor.

Question

Does there exist finite field with q elements, where q is not a prime?

Theorem (Existence and Uniqueness of Finite Fields)

Let $f(x) \in \mathbb{F}_{p}[x]$ be an irreducible polynomial of degree n over \mathbb{F}_{p}, then $\mathbb{F}_{p}[x] /(f(x))$ is a finite field with p^{n} elements. Moreover

$$
\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[x] /(f(x)) \cong \mathbb{F}_{p}(\alpha)
$$

where α is a root of $f(x)$.
The 'uniqueness' is because of the uniqueness (up to isomorphisms) of splitting fields. In fact, $\mathbb{F}_{p^{n}}$ is the splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}.

Example

Let $f(x)=x^{3}+x+1 \in \mathbb{F}_{2}[x]$ be irreducible over \mathbb{F}_{2} and α be a root of it, i.e., $f(\alpha)=\alpha^{3}+\alpha+1=0$. Then $\mathbb{F}_{2}[x] /(f(x))=\mathbb{F}_{2}(\alpha)$ is a finite field with 8 elements. In detail,
$\mathbb{F}_{8}=\left\{0,1, \alpha, \alpha+1, \alpha^{2}, \alpha^{2}+1, \alpha^{2}+\alpha, \alpha^{2}+\alpha+1\right\} \cong \mathbb{F}_{2}^{3}$.

Example

Let $f(x)=x^{3}+x+1 \in \mathbb{F}_{2}[x]$ be irreducible over \mathbb{F}_{2} and α be a root of it, i.e., $f(\alpha)=\alpha^{3}+\alpha+1=0$. Then $\mathbb{F}_{2}[x] /(f(x))=\mathbb{F}_{2}(\alpha)$ is a finite field with 8 elements. In detail,
$\mathbb{F}_{8}=\left\{0,1, \alpha, \alpha+1, \alpha^{2}, \alpha^{2}+1, \alpha^{2}+\alpha, \alpha^{2}+\alpha+1\right\} \cong \mathbb{F}_{2}^{3}$.

Example

Let $f(x)=x^{3}+x+1 \in \mathbb{F}_{2}[x]$. The companion matrix of f is

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

It is well known in linear algebra that $f(A)=0$, therefore, A can play the role of a root of f. The field \mathbb{F}_{8} can be represented in the form $\mathbb{F}_{8}=\left\{0, I, A, A+I, A^{2}, A^{2}+I, A^{2}+A, A^{2}+A+I\right\} \cong \mathbb{F}_{2}^{3}$.

1 Representation of Elements of Finite Field

2 Representation of Boolean Function

Let $f: \mathbb{F}_{2}^{n} \cong \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ be an n-ary Boolean function.

- Truth table

x	000	001	010	011	100	101	110	111
$f(x)$	0	0	0	1	1	1	1	1

Let $f: \mathbb{F}_{2}^{n} \cong \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ be an n-ary Boolean function.

- Truth table

x	000	001	010	011	100	101	110	111
$f(x)$	0	0	0	1	1	1	1	1

- Algebraic normal form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{I \subseteq\{1, \ldots, n\}} a_{I} \prod_{i \in I} x_{i}, a_{I} \in \mathbb{F}_{2},
$$

where

$$
a_{I}=\sum_{\vec{x} \in \mathbb{F}_{2}^{n}, \text { supp }(\vec{x}) \subseteq I} f(\vec{x}) .
$$

e.g., $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{3}$.

Let $F: \mathbb{F}_{2}^{n} \cong \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}^{m} \cong \mathbb{F}_{2^{m}}$ be a vectorial Boolean function.

- Coordinate functions $\quad F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$

Let $F: \mathbb{F}_{2}^{n} \cong \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}^{m} \cong \mathbb{F}_{2^{m}}$ be a vectorial Boolean function.

- Coordinate functions $\quad F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$
- Univariate representation (Lagarange interpolation)

$$
f(x)=\sum_{a \in \mathbb{F}_{2^{n}}} F(a)\left(1+(x+a)^{2^{n}-1}\right)=\sum_{j=0}^{2^{n}-1} a_{j} x^{j}, a_{j} \in \mathbb{F}_{2^{n}}
$$

Let $F: \mathbb{F}_{2}^{n} \cong \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}^{m} \cong \mathbb{F}_{2^{m}}$ be a vectorial Boolean function.
■ Coordinate functions $\quad F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$

- Univariate representation (Lagarange interpolation)

$$
f(x)=\sum_{a \in \mathbb{F}_{2}{ }^{n}} F(a)\left(1+(x+a)^{2^{n}-1}\right)=\sum_{j=0}^{2^{n}-1} a_{j} x^{j}, a_{j} \in \mathbb{F}_{2^{n}} .
$$

- Bivariate representation

$$
\begin{aligned}
f(x, y) & =\sum_{(a, b) \in \mathbb{F}_{2 \frac{n}{2} \times \mathbb{F}_{2} \frac{n}{2}} F(a, b)\left(1+(x+a)^{2^{\frac{n}{2}}-1}\right)\left(1+(y+b)^{2^{\frac{n}{2}-1}}\right)} \\
& =\sum_{i, j=0}^{2^{\frac{n}{2}-1}} a_{i j} x^{i} y^{j}, a_{i j} \in \mathbb{F}_{2^{n}} .
\end{aligned}
$$

Definition (Nonlinearity)

1 The Nonlinearity of Boolean function f is defined as

$$
\begin{aligned}
N L(f) & =\min _{\ell \in A_{n}} d(f, \ell)=\min _{\ell \in A_{n}} w t(f-\ell) \\
& =2^{n-1}-\frac{1}{2} \max _{\omega \in \mathbb{F}_{2^{n}}}\left|W_{f}(\omega)\right|
\end{aligned}
$$

2 The Nonlinearity of vect. Boolean function F is defined as

$$
N L(F)=\min _{v \neq 0}\{N L(v \cdot F)\}
$$

Definition (Nonlinearity)

1 The Nonlinearity of Boolean function f is defined as

$$
\begin{aligned}
N L(f) & =\min _{\ell \in A_{n}} d(f, \ell)=\min _{\ell \in A_{n}} w t(f-\ell) \\
& =2^{n-1}-\frac{1}{2} \max _{\omega \in \mathbb{F}_{2^{n}}}\left|W_{f}(\omega)\right|
\end{aligned}
$$

2 The Nonlinearity of vect. Boolean function F is defined as

$$
N L(F)=\min _{v \neq 0}\{N L(v \cdot F)\}
$$

■ $N L(f) \leq 2^{n-1}-2^{\frac{n}{2}-1}$. If ' $=$ ' holds, f is called bent function.
■ Bent function with optimal nonlinearity(resist linear attack).
■ Are deep holes of the first-order Reed-Muller code.

Definition (Differential uniformity)

The differential uniformity of F is defined as

$$
\delta_{F}=\max _{0 \neq a, b \in \mathbb{F}_{2^{n}}}\left|\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)-F(x)=b\right\}\right|
$$

Definition (Differential uniformity)

The differential uniformity of F is defined as

$$
\delta_{F}=\max _{0 \neq a, b \in \mathbb{F}_{2^{n}}}\left|\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)-F(x)=b\right\}\right| .
$$

Definition (Boomerang uniformity)

Let $T(a, b)$ be the number of solutions of the following equations

$$
\left\{\begin{array}{l}
F(x)+F(y)=b \\
F(x+a)+F(y+a)=b
\end{array}\right.
$$

the boomerang uniformity of F is defined as

$$
\tau_{F}=\max _{0 \neq a, 0 \neq b \in \mathbb{F}_{2 n}} T(a, b)
$$

- $\delta_{F}>0$ is even. If $\delta_{F}=2, F$ is called Almost Perfect Nonlinear function(resist differential attack).
■ $\tau_{F} \geq \delta_{F}$. If $\tau_{F}=\delta_{F}$, we call F with optimal boomerang uniformity(resist boomerang attack).

■ $\delta_{F}>0$ is even. If $\delta_{F}=2, F$ is called Almost Perfect Nonlinear function(resist differential attack).
■ $\tau_{F} \geq \delta_{F}$. If $\tau_{F}=\delta_{F}$, we call F with optimal boomerang uniformity(resist boomerang attack).

Known infinite families of APN power functions over $\mathbb{F}_{2^{n}}$.

Family	Exponent	Conditions
Gold	$2^{i}+1$	$\operatorname{gcd}(i, n)=1$
Kasami	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1$
Welch	$2^{t}+3$	$n=2 t+1$
Niho	$2^{t}+2^{\frac{t}{2}}-1, t$ even	$n=2 t+1$
	$2^{t}+2^{\frac{(3 t+1)}{2}}-1, t$ odd	
Inverse	$2^{2 t}-1$	$n=2 t+1$
Dobbertin	$2^{4 i}+2^{3^{t}}+2^{2^{t}}+2^{i}-1$	$n=5 i$

■ $\delta_{F}>0$ is even. If $\delta_{F}=2, F$ is called Almost Perfect Nonlinear function(resist differential attack).
■ $\tau_{F} \geq \delta_{F}$. If $\tau_{F}=\delta_{F}$, we call F with optimal boomerang uniformity(resist boomerang attack).

Known infinite families of APN power functions over $\mathbb{F}_{2^{n}}$.

Family	Exponent	Conditions
Gold	$2^{i}+1$	$\operatorname{gcd}(i, n)=1$
Kasami	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1$
Welch	$2^{t}+3$	$n=2 t+1$
Niho	$2^{t}+2^{\frac{t}{2}}-1, t$ even	$n=2 t+1$
	$2^{t}+2^{\frac{3(t+1)}{2}}-1, t$ odd	
Inverse	$2^{2 t}-1$	$n=2 t+1$
Dobbertin	$2^{4 i}+2^{3^{i}}+2^{2^{t}}+2^{i}-1$	$n=5 i$

Conjecture

There are only 6 infinite classes of APN power functions.

Conjecture

when $n \geq 8$, there does not exist $A P N$ permutation on $\mathbb{F}_{2^{n}}$.

Conjecture

when $n \geq 8$, there does not exist $A P N$ permutation on $\mathbb{F}_{2^{n}}$.

Conjecture

when $n \equiv 0(\bmod 4)$, there does not exist permutation with optimal boomerang uniformity on $\mathbb{F}_{2^{n}}$.

