▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Representation of Boolean and Vectorial Boolean Function

2021-4-28

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1 Representation of Elements of Finite Field

2 Representation of Boolean Function

1 Representation of Elements of Finite Field

2 Representation of Boolean Function

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Theorem

The residue class ring $\mathbb{Z}/p\mathbb{Z}$ is a finite field with p elements under the addition and multiplication modulo p, where p is a prime.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

The residue class ring $\mathbb{Z}/p\mathbb{Z}$ is a finite field with p elements under the addition and multiplication modulo p, where p is a prime.

Note that if p is not a prime, $\mathbb{Z}/p\mathbb{Z}$ is not a field, but a ring including zero divisor.

Theorem

The residue class ring $\mathbb{Z}/p\mathbb{Z}$ is a finite field with p elements under the addition and multiplication modulo p, where p is a prime.

Note that if p is not a prime, $\mathbb{Z}/p\mathbb{Z}$ is not a field, but a ring including zero divisor.

Question

Does there exist finite field with *q* elements, where *q* is not a prime?

Theorem (Existence and Uniqueness of Finite Fields)

Let $f(x) \in \mathbb{F}_p[x]$ be an irreducible polynomial of degree *n* over \mathbb{F}_p , then $\mathbb{F}_p[x]/(f(x))$ is a finite field with p^n elements. Moreover

$$\mathbb{F}_{p^n} = \mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_p(\alpha)$$

where α is a root of f(x).

The 'uniqueness' is because of the uniqueness (up to isomorphisms) of splitting fields. In fact, \mathbb{F}_{p^n} is the splitting field of $x^{p^n} - x$ over \mathbb{F}_p .

Representation of FF

Example

Let $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ be irreducible over \mathbb{F}_2 and α be a root of it, i.e., $f(\alpha) = \alpha^3 + \alpha + 1 = 0$. Then $\mathbb{F}_2[x]/(f(x)) = \mathbb{F}_2(\alpha)$ is a finite field with 8 elements. In detail, $\mathbb{F}_8 = \{0, 1, \alpha, \alpha + 1, \alpha^2, \alpha^2 + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1\} \cong \mathbb{F}_2^3$.

Example

Let $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ be irreducible over \mathbb{F}_2 and α be a root of it, i.e., $f(\alpha) = \alpha^3 + \alpha + 1 = 0$. Then $\mathbb{F}_2[x]/(f(x)) = \mathbb{F}_2(\alpha)$ is a finite field with 8 elements. In detail, $\mathbb{F}_8 = \{0, 1, \alpha, \alpha + 1, \alpha^2, \alpha^2 + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1\} \cong \mathbb{F}_2^3$.

Example

Let $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$. The companion matrix of f is

$$A = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

It is well known in linear algebra that f(A) = 0, therefore, A can play the role of a root of f. The field \mathbb{F}_8 can be represented in the form $\mathbb{F}_8 = \{0, I, A, A + I, A^2, A^2 + I, A^2 + A, A^2 + A + I\} \cong \mathbb{F}_2^3$.

1 Representation of Elements of Finite Field

2 Representation of Boolean Function

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ 亘 のへぐ

Let
$$f : \mathbb{F}_2^n \cong \mathbb{F}_{2^n} \to \mathbb{F}_2$$
 be an *n*-ary Boolean function.

Truth table

x	000	001	010	011	100	101	110	111
f(x)	0	0	0	1	1	1	1	1

Let
$$f : \mathbb{F}_2^n \cong \mathbb{F}_{2^n} \to \mathbb{F}_2$$
 be an *n*-ary Boolean function.

Truth table

x	000	001	010	011	100	101	110	111
f(x)	0	0	0	1	1	1	1	1

Algebraic normal form

$$f(x_1,\ldots,x_n)=\sum_{I\subseteq\{1,\ldots,n\}}a_I\prod_{i\in I}x_i,a_I\in\mathbb{F}_2,$$

where

$$a_I = \sum_{\vec{x} \in \mathbb{F}_2^n, supp(\vec{x}) \subseteq I} f(\vec{x}).$$

e.g., $f(x_1, x_2, x_3) = x_1x_2x_3 + x_1x_2 + x_3$.

Let $F : \mathbb{F}_2^n \cong \mathbb{F}_{2^n} \to \mathbb{F}_2^m \cong \mathbb{F}_{2^m}$ be a vectorial Boolean function.

• Coordinate functions $F(x) = (f_1(x), f_2(x), \dots, f_m(x))$

Representation of BF

(日)

Let $F : \mathbb{F}_2^n \cong \mathbb{F}_{2^n} \to \mathbb{F}_2^m \cong \mathbb{F}_{2^m}$ be a vectorial Boolean function.

- Coordinate functions $F(x) = (f_1(x), f_2(x), \dots, f_m(x))$
- Univariate representation (Lagarange interpolation)

$$f(x) = \sum_{a \in \mathbb{F}_{2^n}} F(a) \left(1 + (x+a)^{2^n-1} \right) = \sum_{j=0}^{2^n-1} a_j x^j, a_j \in \mathbb{F}_{2^n}.$$

Representation of BF

Let $F : \mathbb{F}_2^n \cong \mathbb{F}_{2^n} \to \mathbb{F}_2^m \cong \mathbb{F}_{2^m}$ be a vectorial Boolean function.

- Coordinate functions $F(x) = (f_1(x), f_2(x), \dots, f_m(x))$
- Univariate representation (Lagarange interpolation)

$$f(x) = \sum_{a \in \mathbb{F}_{2^n}} F(a) \left(1 + (x+a)^{2^n-1} \right) = \sum_{j=0}^{2^n-1} a_j x^j, a_j \in \mathbb{F}_{2^n}.$$

Bivariate representation

$$\begin{split} f(x,y) &= \sum_{(a,b) \in \mathbb{F}_{2^{\frac{n}{2}}} \times \mathbb{F}_{2^{\frac{n}{2}}}} F(a,b) \left(1 + (x+a)^{2^{\frac{n}{2}}-1} \right) \left(1 + (y+b)^{2^{\frac{n}{2}}-1} \right) \\ &= \sum_{i,j=0}^{2^{\frac{n}{2}}-1} a_{ij} x^{i} y^{j}, a_{ij} \in \mathbb{F}_{2^{n}}. \end{split}$$

Representation of BF

Representation of Boolean Function

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition (Nonlinearity)

The Nonlinearity of Boolean function f is defined as

$$\begin{split} \mathsf{NL}(f) &= \min_{\ell \in A_n} d(f,\ell) = \min_{\ell \in A_n} \mathsf{wt}(f-\ell) \\ &= 2^{n-1} - \frac{1}{2} \max_{\omega \in \mathbb{F}_{2^n}} |W_f(\omega)| \end{split}$$

2 The Nonlinearity of vect. Boolean function *F* is defined as

$$NL(F) = \min_{v \neq 0} \{ NL(v \cdot F) \}$$

Representation of BF

Definition (Nonlinearity)

The Nonlinearity of Boolean function f is defined as

$$\begin{split} \mathsf{NL}(f) &= \min_{\ell \in A_n} d(f,\ell) = \min_{\ell \in A_n} \mathsf{wt}(f-\ell) \\ &= 2^{n-1} - \frac{1}{2} \max_{\omega \in \mathbb{F}_{2^n}} |W_f(\omega)| \end{split}$$

2 The Nonlinearity of vect. Boolean function F is defined as

$$NL(F) = \min_{\nu \neq 0} \{ NL(\nu \cdot F) \}$$

NL(f) ≤ 2ⁿ⁻¹ - 2^{n/2-1}. If '=' holds, *f* is called bent function.
Bent function with optimal nonlinearity(resist linear attack).
Are deep holes of the first-order Reed-Muller code.

Representation of BF

Representation of Boolean Function

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition (Differential uniformity)

The differential uniformity of F is defined as

$$\delta_F = \max_{0 \neq a, b \in \mathbb{F}_{2^n}} |\{x \in \mathbb{F}_{2^n} | F(x+a) - F(x) = b\}|.$$

Representation of BF

Representation of Boolean Function

Definition (Differential uniformity)

The differential uniformity of F is defined as

$$\delta_F = \max_{0 \neq a, b \in \mathbb{F}_{2^n}} |\{x \in \mathbb{F}_{2^n} | F(x+a) - F(x) = b\}|.$$

Definition (Boomerang uniformity)

Let T(a,b) be the number of solutions of the following equations

$$\begin{cases} F(x) + F(y) = b\\ F(x+a) + F(y+a) = b \end{cases}$$

the boomerang uniformity of F is defined as

$$\tau_F = \max_{0 \neq a, 0 \neq b \in \mathbb{F}_{2n}} T(a, b).$$

900

Representation of BF

- $\delta_F > 0$ is even. If $\delta_F = 2$, *F* is called Almost Perfect Nonlinear function(resist differential attack).
- $\tau_F \ge \delta_F$. If $\tau_F = \delta_F$, we call *F* with optimal boomerang uniformity(resist boomerang attack).

Representation of BF

- $\delta_F > 0$ is even. If $\delta_F = 2$, *F* is called Almost Perfect Nonlinear function(resist differential attack).
- $\tau_F \ge \delta_F$. If $\tau_F = \delta_F$, we call *F* with optimal boomerang uniformity(resist boomerang attack).

Family	Exponent	Conditions
Gold	$2^{i} + 1$	$\gcd(i,n)=1$
Kasami	$2^{2i} - 2^i + 1$	$\gcd(i,n) = 1$
Welch	$2^{t} + 3$	n = 2t + 1
Niho	$2^t + 2^{\frac{t}{2}} - 1, t \text{ even}$	n = 2t + 1
	$2^t + 2^{\frac{(3t+1)}{2}} - 1, t \text{ odd}$	
Inverse	$2^{2t} - 1$	n = 2t + 1
Dobbertin	$2^{4i} + 2^{3^i} + 2^{2^i} + 2^i - 1$	n = 5i

Known infinite families of APN power functions over \mathbb{F}_{2^n} .

Representation of BF

- $\delta_F > 0$ is even. If $\delta_F = 2$, *F* is called Almost Perfect Nonlinear function(resist differential attack).
- $\tau_F \ge \delta_F$. If $\tau_F = \delta_F$, we call *F* with optimal boomerang uniformity(resist boomerang attack).

Family	Exponent	Conditions
Gold	$2^{i} + 1$	$\gcd(i,n) = 1$
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1
Welch	$2^{t} + 3$	n = 2t + 1
Niho	$2^t + 2^{\frac{t}{2}} - 1, t \text{ even}$	n = 2t + 1
	$2^t + 2^{\frac{(3t+1)}{2}} - 1, t \text{ odd}$	
Inverse	$2^{2t} - 1$	n = 2t + 1
Dobbertin	$2^{4i} + 2^{3^i} + 2^{2^i} + 2^i - 1$	n = 5i

Known infinite families of APN power functions over \mathbb{F}_{2^n} .

Conjecture

There are only 6 infinite classes of APN power functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conjecture

when $n \ge 8$, there does not exist APN permutation on \mathbb{F}_{2^n} .

Conjecture

when $n \ge 8$, there does not exist APN permutation on \mathbb{F}_{2^n} .

Conjecture

when $n \equiv 0 \pmod{4}$, there does not exist permutation with optimal boomerang uniformity on \mathbb{F}_{2^n} .