Ty,

SCIENCE
PASSION
TECHNOLOGY

Tools for Cryptanalysis

Maria Eichlseder

> www.iaik.tugraz.at

+H

&

Outline

Computer-Aided Cryptanalysis

Tools for Finding Differential Characteristics

* Method 1: Matsui’s branch-and-bound algorithm

* Method 2: Mixed-Integer Linear Programming (MILP)

* Method 3: Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)
= Method 4: Dedicated Guess-and-Determine search

1/37

Computer-Aided Cryptanalysis
&

Pen-and-Paper or Computer?

A" Many published attacks are presented and (mostly) verifiable via pen-and-paper
il Many published attacks are round-reduced attacks on “good ciphers”

with impractical complexity (at least for university budgets)

since their main purpose is to evaluate the security margin conservatively:
Better overestimate than underestimate the attacker!

A Experimental evaluation of parts of the attack is important
L Ciphers are designed to be complex: some problems infeasible to solve by hand

A% Designing ciphers is also complex: use tools to find good building blocks

Computer-Aided Cryptanalysis - Examples

= Linear & Differential Cryptanalysis

® Finding good characteristics for many rounds
® Proving bounds for the best possible characteristics
m Finding right pairs, particularly for hash collisions

m Advanced Linear & Differential Attacks

®» Finding “combinable” fragments (impossible diff., diff.-lin., ...)

= Algebraic Attacks

m Equation solving for key recovery
m Finding algebraic properties over many rounds (cubes, division property...)

3/37

Tools for Finding Differential Characteristics
o

Automated Tools for (Differential) Cryptanalysis

Motivation:

Finding good characteristics can be hard, but is necessary to evaluate new designs
Solvers:

@ By hand

Q General-purpose solvers:

m SAT/SMT (Boolean SATisfiability/Sat. Modulo Theories)
= MILP (Mixed Integer Linear Programming)
m CP (Constraint Programming):

[#) Dedicated solvers

m Matsui’s branch-and-bound algorithm
m KeccakTools (SHA-3),nltool (SHA-2),...

/37

Basic Approach

A Model constraints that characterize correct characteristics/solutions

m Coarse-grained: truncated patterns (which S-boxes are active?)

m Fine-grained: precise differences/masks

&fe Model cost (if applicable)

Express the search goal: any one / all / best / good solution(s)?

5/37

Method 1: Matsui’s Branch-and-Bound algorithm

= Introduced by Matsui to find the best characteristics for DES [Mat94]
= Adynamic programming technique working round-by-round:

m B, -the best (highest) differential probability for i rounds
m B;-alowerboundB; < B, e.g., the probability of some characteristic

Idea: Derive the best n-round probability B, from knowing the best i-round
probabilities B; (1 <i<n—1)

anl
B, \
~

.. e o o ..

01 02 On—1 On

[oy)
-

=)

o

Method 1: Matsui’s Branch-and-Bound algorithm

The algorithm works by induction over the number of rounds n:

To initialize B,,, iteratively extend the best (n — 1)-round characteristic by 1
round = B, = B,_1 - p,

For B, traverse the search tree and cut bad branches:

® roundl: Foreach &, — 8y, if p1By_1 > B,: call round2
= round2: Foreach &, — &,,if p1paBy_> > B,: call round3

» Ifp=pip,---pn > By, update B, :=p

Method 1: Matsui’s Branch-and-Bound algorithm - Properties

© Solves an optimization problem, finds best characteristic

Efficient when there are not too many candidates to test:

= Small state size, few good characteristics
= Lightweight Feistel ciphers may be good candidates
m Partial results can be combined to get bounds (without solutions)

@ Not feasible for many modern ciphers

= State size too large, too many good characteristics:
Need to iterate over all §; — 9, etc.

= Not trivial to adapt for related-key characteristics etc.

37

Method 2: Mixed-Integer Linear Program (MILP)

Linear Programming (LP) is a method to solve optimization problems

= on the real-valued, positive decision variablesx € RY x > 0

= with a linear objective function (min or max) f(x) = c'x = 3.7, cix;

= under J linear constraints (s.t.) Ax < b, i.e., Z;j:l aix; < bjforl <j < U

max {c'x | Ax < b Ax >0}
x€Rd

Mixed-Integer Linear Programming (MILP) allows some of the decision
variables to be constrained to integer values: x € 7/ x R,

/37

Method 2: LP vs. MILP

w

10/37

Method 2: MILP - Solvers

Hardness of LP/MILP solving:

= LP: Efficient solving algorithms such as Dantzig’s simplex method are
available.

= MILP problems can be NP-hard. Solvers combine LP solvers with
branch-and-bound.

Some well-known solver software:

= TIBM ILOG CPLEX

® Gurobi

These solvers can be used as stand-alone software (. 1p input files)
or as libraries with convenient interfaces (C/C++, sagemath, ...).

11/37

Method 2: MILP - Example application: AES

Idea: First find (one of) the best “truncated patterns” with MILP:

Ko Ki

mEEEE--E e S e @SB@SR@“’I
Ll Ll Ll Ll

| Round 1 | Round 2

.\

4
A

Then find exact differences with some other means - or just derive a bound
from the number of active S-boxes:

00 00 00 40 00 00 00 6a’ 00 00 00 6a e 00 00 00 d4 00 00 00 2b’ 00 00 00 2b . cd 61 a3 56
00000000 s |00000000]| sk [000000O00| ak |0000006a 58, 00 00 00 61 N 00006100| mc_ |cdad3c22b

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 00 00 00 61 00 61 00 00 4c c2612b
00 00 00 00 00 00 00 00 00 00 00 00, 00 00 00 be 00 00 00 cd cd 00 00 00, 816161 7d
2—6 2—6 x4

12/37

Method 2: MILP - Example application: AES [MwGP11]

Y
a
™

a mHseMHHsr ™ MCI

(BRI

Variables: 1 binary variable per state byte (active/inactive)

m AddRoundKey: input = output
= SubBytes: input = output, cost = sum(inputs)
= ShiftRows: variable renaming

= MixColumns: for each active column: sum(inputs) + sum(outputs) > 5 (= B)

13/37

Method 2: MILP - Example application: AES [MwGP11]

Variables:
= S,;j €{0,1}:IsS-boxinrow i, column;inround r active?

= M, € {0,1}:Is MixColumns in round r active?

Linear Program:

min Z Srij (Min # active S-boxes)
Iy

st. B-M,; < ZS,, ()% + ZS,H,, <8-M,; (ForeachMixColumns)

ZSOU >1 (Non-triviality)

14/37

Method 2: MILP - Example application: AES - Code in sagemath

#!/usr/bin/env sage

rounds = range (4)

p = MixedIntegerLinearProgram(maximization=False)
S = p.new_variable(name=’sbox’, binary=True)

M = p.new_variable(name=’mcol’, binary=True)

for r in rounds:
for j in [0..3]:
activecells = sum(S[r,i,(i+j)%4] for i imn [0..3]) \
+ sum(S[r+1,i,j] for i in [0..3])
p.add_constraint (6*xM[r,j] <= activecells <= 8xM[r,j])
p-add_constraint (sum(S[0,i,j] for i in [0..3] for j in [0..3]) >= 1)

p.set_objective (sum(S[r,i,j] for r in rounds for i in [0..3] \
for j in [0..3]))

p-solve()

print (p.get_objective_value(), p.get_values(S))

37

Method 2: MILP - Example application: AES

@ Forany k - 4 rounds, results confirm k - 25 active S-boxes from theory

& Model is more interesting for related-key characteristics where there may
be differences in the key

m AddRoundKey: Model key-xor by its branch number B = 2
m Model key schedule (similar operations)
m Result: Fewer active S-boxes!

& Similar approaches quite popular for new designs, particularly tweakable
block ciphers (— related-tweakey!)

16/37

Method 2: MILP - Advanced models 1

Bitwise Boolean functions: Some ciphers combine AES-like operations with
some bitwise operations, such as X0OR (key/tweak schedule, Feistel, ...).

There are many useful gadgets in MILP modelling for translating Boolean
expressions (like A vV B or A = B) to MILP conditions, but we are interested
in the bytewise differential/linear patterns of these operations, e.g.:

inputs,0 — outputd inputs(J,0 — output
SOR - inputsC],®@ — outputm D inputsC],®@ — outputClorm

inputsm.[] — outputm inputsm.[] — outputClorm

inputsm, @ — outputCJorm inputsm, @ — outputClorm

These can be modeled by their branch number (X0R: model B = 2) or by
writing Boolean conditions & translating (AND: O = I, V I, in MILP: O < |, + 1)

17/37

Method 2: MILP - Advanced models 2

Lightweight MixColumns: Many lightweight ciphers use more lightweight

MixColumns matrices with smaller branch number 3, for example

1611
MC:<1101

1110

Simple models using B = 4 or a sequence of X0Rs allow too many patterns:
(truncated columns in hex notation; e.g., 5 = (0,1,0,1))

R OT P OONDUIBWNHO

(a) Branch number model

) with B =4 (“near-MDS”)

Fh Q.0 T P OO~DUIS LN

a-f

0123456789abcdef
T T

(b) XOR model

[DEKM16]

Fh O Q0T P OO~OUIS LN

B

0123456789abcdef
TTT

(c) Exact model

18/37

Method 2: MILP - Advanced models 2

The valid patterns (aq, ...,a3)" — (bo, ..., bs)" are exactly the following:
\0123456789abcdef
3 I} active cells

Vi:a;@b;:@jaj

active cells and a; = b;

. activecellsanda; = b; ® 1

u A or more active cells — > ai+ ;b >6

Fh O Q. 0T P OO~OUIHWNI

We need to express (Co A C; A C, A C3) V Cq (Co.3 for bit i of [2 4, C, for B):
= 5binary helpervariables Cy ... C4and constraintCo + C; + C, + C3 +4C4 > 4

= Condition C4: constrainty . a;+ >_.b; > 6C4
= Conditions C_3: integer helper X for XOR, constraintb; + >, a; = 2X + (1 —.())

Method 2: MILP - Advanced models 3

S-box details and bitwise models: Sometimes, patterns of active S-boxes
are not sufficient for good bounds - think of ARX ciphers or PRESENT:

DD DD DDDDDDN DDDDDDDDDDDEDDDEDDDEH
AR AT IR SRR AT AN

@saaaaaaaaaaaéas

\'AL'!\'!L'-WI;\'-» S T ‘l'a-‘u-'ll",ll"’
P
0‘

This would require a linear model of the S-box DDT, which is usually more
complex than the previous MixColumns example, particularly for large S-boxes.

There are tools/algorithms that can perform such a translation
Vertex representation (table) — Half-space representation (linear inequalities)

20/37

Method 2: MILP - Properties

© Solves an optimization problem

Useful to prove bounds for “strongly aligned”, AES-like ciphers

= Cost evaluation as a (weighted) sum works nicely
= Can have more complex cost metrics using weights
= Often works very efficiently even for full-round ciphers

@ Not so useful for complex bitwise descriptions and characteristics

m Language of linear inequalities is not so natural for crypto
= Too many integer variables lead to bad solver performance

21/37

Method 3: SAT/SMT/CP - Different Levels of Convenience

SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF
/\\/&J with literals ¢;; € {vi;, —vi;}
i

Any set of Boolean constraints can (and needs to) be translated to CNF.
Example solvers: MiniSAT, lingeling, and a myriad others

SMT (Sat. Modulo Theories) Solvers: Accept a more general grammar
including bitvector operations such as integer addition. Solvers often
translate these into CNF and feed the result to SAT solvers.

Example solvers: STP (“Simple Theorem Prover”), ...

CP (Constraint Programming) Solvers: Accept an even more general
grammar (depends on solver). Example solvers: Z3, Choco, ...

22/37

Method 3: SAT/SMT/CP - Properties

© Solves a satisfiability problem, may not be optimal

= “Emulate” optimization: “is there a solution better than X, X + 1, X +2,...?”

Useful to find valid solutions under some constraints

® Finding characteristics that follow a given truncated pattern
m Finding solutions for other crypto problems (preimage, ...)
= Well-suited for modelling the Boolean networks in ciphers (except X0Rs)

@ Not so efficient for some more complex problems

= Not too many rounds (too many variables!)
= Not so good for modelling a cost sum or optimization

23/37

Method 4: Dedicated Guess-and-Determine Search

m Guess-and-Determine Search is a general search strategy

m Traverse search tree to find a valid solution
m SAT solvers use it on CNF level

m Thisis an example on small (differential) circuits

m nltool: Automated search for characteristics and solutions AX

m Hash collision search W
m Application example: SHA-2 [MNS11; MNS13; DEM15]

0

24 /37

Generalized Differences: Motivation [DRos]

1. ARX designs with modular addition and XOR of w-bit words:

bitwise signed difference A* € {0,+1,-1}"
uniquely determines both

modular difference A= "A€Ly

bitwise xor difference A% = (|AF));

2. Search progress: Represent all stages of the evolution from a starting point
(where only some zero-differences are fixed) via the characteristic (of
signed differences) to the message pair (of fixed bit values).

Generalized Differences

Let (x;, x") be a pair of bits. The generalized condition V (x;, x*) constrains the
possible values of (x;, x) to a subset of all pairs {(1,1), (0,1),(1,0), (0,0)}

e — is-allowed and o = is-not-allowed

V(2,77 V(z,7") V(z,7") V(z,7")
0 =o00e - = e00® 3=o00ee 7 =0e0@
u=oo0eo X = 0000 5=oce0e B=ec00e
= 0e00 # = ooo00 A =e0e00 D =ee0e@
1 =e000 7= o000 C=e000 E=e0e0

Search: start from undetermined bits and refine until allare € {0,1,n,u}

26/37

Guess-and-Determine Search Algorithm

while there are undetermined bits do
Decision (Guessing)

1. Pick an undetermined bit

2. Constrain this bit
Deduction (Propagating)

3. Propagate the new information to other variables and equations

4. if noinconsistency is detected, goto step 1
Correction (Backtracking)

5. if possible, apply a different constraint to this bit, goto step 3
6. else undo guesses until this critical bit can be resolved

27/37

Bitsliced Propagation 1

Divide the crypto circuit into small “bitslices” with few involved bits

Example: Linear layer

Xo X1 X2 X3 Xa Ce X63

Yo Y1 Y2 Y3 ya Ye3

Example: Modular additionz =x+y mod 2" =z, = x; ® y; @ ¢; with carry bit ¢

28/37

Bitsliced Propagation 2

Example: Bit-XOR operation y = f(x) = x; @ x, with
V(x,x*) = [7x], Vy.y*) =I[-], orinshort, V(z,z*) = [7x-].
This generalized difference allows 16 (of 4°* = 64) solutions (z, z*) = (xuy, X{X5y*):

(
(000,010), (000,110), (100,010), (100,110),
(010,000), (010,100), (110,000), (110,100),
(001,011), (001,111), (101,011), (101,111),
(011,001), (011,101), (111,001), (111,101).

However, only 4 of the 12 are valid input and output combinations for f:
(000,110), (110,000), (101,011), (011,101).
The minimal generalized difference that contains all the above true solutions is

V(z,z") = [xx-].

29/37

Branching & Backtracking

7777
X___
Xo = - Xo =X
77— (e
X--- X---
X1 = - X1 =X X1 = - X1 =X
HHH# HHtH# H#H# -XXX
HH#H# HHH# HAHH X---
Xo=n
-XXn

30/37

Example: SHA-2 - Compression Function

SHA-512

SHA-256

64 steps

80 steps

1

h,'_ m;
4’512 4’1024
Y

31/37

Example: SHA-2 - Round Function (64 or 80 Rounds)

(A [Bia |Gy [Diy [Ea [Fia [Gia [Hin] (8% {32,64}-bitstate)
g
g

E«—K; (round constant)

o) .
=g }Eﬂ ;@vﬁ

E(message word)

LU‘
|
Y
M
—

maJ(2) =(xAy)®(xN2)@ (Y A2)
if(x,y,2) = (x \y) @ (X A\ 2)
(x) x> 2)d (x> 13)d (x > 22) (for SHA-256)
Yi(x)=(x> 6)d (x> 11)® (x > 25) (for SHA-256) 4,3

Example: SHA-2 - Round Function, Alternative Representation

Recursive update patterns formA;, £;, and W; using m:

| Ei | Wi

33/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

V() V()

: m;

3

% Mg L\

i V—s [—sh
i

8

o Shows state words A;,
24

= Ei, W;

m Inputs IV, m;

33

“

36 W

: ! m Output hy

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

V@A)

V()

27777777727 727777727777
20777777777 777777777777
2O

77 77
7777 IIIIIIIII I

U/ rs77777777777777777777

777777777777777777777777)
Wy

W;

Starting point:

0. “Local Collision”
with few active
message words

Active words with
differences [7]

N

No differences [-]
(cancellation required)

O

No differences [-]

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

Q) VG Search strategy:

1. Fix high-probability parts

m Active words with some
: : differences [7]

m Active bits [n,u,x]

o Inactive bits [-]

W WL W W WM N NN b b b b s s
whro BUERREBEEBRRNERRENESE6SI6GRERESom~wonswn o Hbh A

@ ()
hy hi

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

(V@A)

Vi3

o ullle o 'lllllf‘hl

Q)
hy

@)
hy

Search strategy:
1. Fix high-probability parts

2. Fixsigned differences

m Active bits [n,u]
o Inactive bits [-]

m Fixed inactive bits [0,1]

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

Som~NonrwNRO LA

W WL W WEWWNNNNNN NN NN b e
whro BUERREREEBBRERRENESE6SI6GRERE

(V@A)

Vi3

Q)
hy

@)
hy

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]
o Inactive bits [-]

m Fixed inactive bits [0,1]

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

Som~NonrwNRO LA

W WL W WEWWNNNNNN NN NN b e
whro BUERREREEBBRERRENESE6SI6GRERE

(V@A)

Vi3

Q)
hy

@)
hy

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]
o Inactive bits [-]

m Fixed inactive bits [0,1]

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

VA VG) Search strategy:

1. Fix high-probability parts

Som~NonrwNRO LA

2. Fixsigned differences

3. Find message pair

m Active bits [n,u]

o Inactive bits [-]

W WL W WEWWNNNNNN NN NN b e
whro BUERREREEBBRERRENESE6SI6GRERE

Q) @)
hy hy

m Fixed inactive bits [0,1]

34/37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]

o Inactive bits [-]

m Fixed inactive bits [0,1]

34/37

Improving Guess & Determine?

m Problem description

= Starting point and high-level strategy
m Hash function description

m Guessing strategy, branching rules
» Which variable to pick first? Which value to guess first for this variable?
m Propagation

= How to determine implications of a guess?
m How to detect contradictions?

m Backtracking

= How many guesses to undo? When to restart?

35/37

Conclusion

@ Computer-Aided Cryptanalysis

Qg Tools for Finding Differential Characteristics
* Method 1: Matsui’s branch-and-bound algorithm
* Method 2: Mixed-Integer Linear Programming (MILP)
* Method 3: Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)
= Method 4: Dedicated Guess-and-Determine search

36/37

Questions

12/

Questions you should be able to answer

1. What are the respective advantages/disadvantages of searching

characteristics by hand, using general-purpose solvers, or using dedicated
solvers?

2. Explain Matui’s Branch-and-Bound algorithm and discuss its
advantages/disadvantages.

3. Model the problem of bounding the number of active S-boxes of AES as a
Mixed-Integer Linear Program (MILP). Explain the model.

4. Outline the dedicated guess-and-determine search algorithm discussed in
the lecture, and explain how it propagates information.

37/37

Bibliography |

[DEKM16]

[DEM15]

[DRO6]

[Mat94]

Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel.
Practical Key-Recovery Attack on MANTISS5. IACR Transactions on Symmetric
Cryptology 2016.2 (2016), pp. 248-260. DOI:
10.13154/tosc.v2016.12.248-260.

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of
SHA-512/224 and SHA-512/256. Advances in Cryptology - ASIACRYPT 2015.
Vol. 9453. LNCS. Springer, 2015, pp. 612-630. DO!:
10.1007/978-3-662-48800-3_25.

Christophe De Canniere and Christian Rechberger. Finding SHA-1 Characteristics:
General Results and Applications. Advances in Cryptology — ASIACRYPT 2006.
Vol. 4284. LNCS. Springer, 2006, pp. 1-20. bol: 10.1007/11935230_1.

Mitsuru Matsui. On Correlation Between the Order of S-boxes and the Strength
of DES. Advances in Cryptology - EUROCRYPT '94. Vol. 950. LNCS. Springer, 1994,
pp. 366-375. DOI: 10.1007/BFb0053451.

https://doi.org/10.13154/tosc.v2016.i2.248-260
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/BFb0053451

Bibliography II

[MNS11]

[MNS13]

[MWGP11]

Florian Mendel, Tomislav Nad, and Martin Schlaffer. Finding SHA-2
Characteristics: Searching through a Minefield of Contradictions. Advances in
Cryptology - ASIACRYPT 2011. Vol. 7073. LNCS. Springer, 2011, pp. 288-307. DOI:
10.1007/978-3-642-25385-0_16.

Florian Mendel, Tomislav Nad, and Martin Schlaffer. Improving Local Collisions:
New Attacks on Reduced SHA-256. Advances in Cryptology - EUROCRYPT 2013.
Vol. 7881. LNCS. Springer, 2013, pp. 262-278. DO!:
10.1007/978-3-642-38348-9_16.

Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and Linear
Cryptanalysis Using Mixed-Integer Linear Programming. Information Security
and Cryptology - Inscrypt 2011. Vol. 7537. LNCS. Springer, 2011, pp. 57-76. DOI:
10.1007/978-3-642-34704-7_5.

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-34704-7_5

	Computer-Aided Cryptanalysis
	
	Tools for Finding Differential Characteristics
	
	Method 1: Matsui's branch-and-bound algorithm
	Method 2: Mixed-Integer Linear Programming (MILP)
	Method 3: Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)
	Method 4: Dedicated Guess-and-Determine search

	Questions
	
	References

