
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Tools for Cryptanalysis

Maria Eichlseder

Applied Cryptography 2 – ST 2020

www.iaik.tugraz.at

Ç Outline

µ Computer-Aided Cryptanalysis

3 Tools for Finding Di�erential Characteristics
Method 1: Matsui’s branch-and-bound algorithm
Method 2: Mixed-Integer Linear Programming (MILP)
Method 3: Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)
Method 4: Dedicated Guess-and-Determine search

1 / 37

Computer-Aided Cryptanalysis
µ

Pen-and-Paper or Computer?

Ê Many published attacks are presented and (mostly) verifiable via pen-and-paper

� Many published attacks are round-reduced attacks on “good ciphers”
with impractical complexity (at least for university budgets)
since their main purpose is to evaluate the security margin conservatively:
Better overestimate than underestimate the attacker!

� Experimental evaluation of parts of the attack is important

B Ciphers are designed to be complex: some problems infeasible to solve by hand

� Designing ciphers is also complex: use tools to find good building blocks

2 / 37

Computer-Aided Cryptanalysis – Examples

Linear & Di�erential Cryptanalysis

Finding good characteristics for many rounds
Proving bounds for the best possible characteristics
Finding right pairs, particularly for hash collisions

Advanced Linear & Di�erential Attacks

Finding “combinable” fragments (impossible di�., di�.-lin., . . .)

Algebraic Attacks

Equation solving for key recovery
Finding algebraic properties over many rounds (cubes, division property. . .)

3 / 37

Tools for Finding Di�erential Characteristics
3

Automated Tools for (Di�erential) Cryptanalysis

Motivation:
Finding good characteristics can be hard, but is necessary to evaluate new designs
Solvers:
Ê By hand
2 General-purpose solvers:

SAT/SMT (Boolean SATisfiability/Sat. Modulo Theories)
MILP (Mixed Integer Linear Programming)
CP (Constraint Programming):

2 Dedicated solvers
Matsui’s branch-and-bound algorithm
KeccakTools (SHA-3), nltool (SHA-2), . . .
. . .

4 / 37

Basic Approach

o Model constraints that characterize correct characteristics/solutions

Coarse-grained: truncated patterns (which S-boxes are active?)

Fine-grained: precise di�erences/masks

¤ Model cost (if applicable)

◎ Express the search goal: any one / all / best / good solution(s)?

5 / 37

Method 1: Matsui’s Branch-and-Bound algorithm

Introduced by Matsui to find the best characteristics for DES [Mat94]

A dynamic programming technique working round-by-round:

Bi – the best (highest) di�erential probability for i rounds
Bi – a lower bound Bi ≤ Bi, e.g., the probability of some characteristic

Idea: Derive the best n-round probability Bn from knowing the best i-round
probabilities Bi (1 ≤ i ≤ n− 1)

•
δ0

•
δ1

•
δ2

•
δn−1

•
δn

· · ·R R R R
B1

B2

Bn−1
Bn

6 / 37

Method 1: Matsui’s Branch-and-Bound algorithm

The algorithmworks by induction over the number of rounds n:

1 To initialize Bn, iteratively extend the best (n− 1)-round characteristic by 1
round→ Bn = Bn−1 · pn

2 For Bn, traverse the search tree and cut bad branches:

round1: For each δ0 → δ1, if p1Bn−1 ≥ Bn: call round2

round2: For each δ1 → δ2, if p1p2Bn−2 ≥ Bn: call round3

...

If p = p1p2 · · · pn ≥ Bn, update Bn := p

7 / 37

Method 1: Matsui’s Branch-and-Bound algorithm – Properties

) Solves an optimization problem, finds best characteristic

Ý E�icient when there are not too many candidates to test:

Small state size, few good characteristics
Lightweight Feistel ciphers may be good candidates
Partial results can be combined to get bounds (without solutions)

Ä Not feasible for manymodern ciphers

State size too large, too many good characteristics:
Need to iterate over all δ0 → δ1 etc.
Not trivial to adapt for related-key characteristics etc.

8 / 37

Method 2: Mixed-Integer Linear Program (MILP)

Linear Programming (LP) is a method to solve optimization problems

on the real-valued, positive decision variables x ∈ Rd, x ≥ 0

with a linear objective function (min ormax) f (x) = cTx =
∑d

i=1 cixi

under J linear constraints (s.t.) Ax ≤ b, i.e.,
∑d

i=1 ajixi ≤ bj for 1 ≤ j ≤ J:

max
x∈Rd
{cTx | Ax ≤ b ∧ x ≥ 0}

Mixed-Integer Linear Programming (MILP) allows some of the decision
variables to be constrained to integer values: x ∈ Zi × Rd−i.

9 / 37

Method 2: LP vs. MILP

y

x
0 1 2 3 4 5 6

0

1

2

3

4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

−x + 3 y ≤
9 2 x + 5 y ≤ 22

2
x
≤
11

•LP•
MILP

max x + y

10 / 37

Method 2: MILP – Solvers

Hardness of LP/MILP solving:

LP: E�icient solving algorithms such as Dantzig’s simplex method are
available.

MILP problems can be NP-hard. Solvers combine LP solvers with
branch-and-bound.

Some well-known solver so�ware:

IBM ILOG CPLEX

Gurobi

These solvers can be used as stand-alone so�ware (.lp input files)
or as libraries with convenient interfaces (C/C++, sagemath, . . .).

11 / 37

Method 2: MILP – Example application: AES

Idea: First find (one of) the best “truncated patterns” with MILP:

SB SR MC SB SR MC

K0 K1

M

| Round 1 | Round 2 |

Then find exact di�erences with some other means – or just derive a bound
from the number of active S-boxes:00 00 00 40
00 00 00 00
00 00 00 00
00 00 00 00

 SB7−→

00 00 00 6a
00 00 00 00
00 00 00 00
00 00 00 00

 SR7−→

00 00 00 6a
00 00 00 00
00 00 00 00
00 00 00 00

 MC
AK7−→

00 00 00 d4
00 00 00 6a
00 00 00 6a
00 00 00 be

 SB7−→

00 00 00 2b
00 00 00 61
00 00 00 61
00 00 00 cd

 SR7−→

00 00 00 2b
00 00 61 00
00 61 00 00
cd 00 00 00

 SR
MC7−→

cd 61 a3 56
cd a3 c2 2b
4c c2 61 2b
81 61 61 7d

2−6 2−6×4
12 / 37

Method 2: MILP – Example application: AES [MWGP11]

SB SR MC SB SR MC

Variables: 1 binary variable per state byte (active/inactive)

AddRoundKey: input = output

SubBytes: input = output, cost = sum(inputs)

ShiftRows: variable renaming

MixColumns: for each active column: sum(inputs) + sum(outputs) ≥ 5 (= B)
13 / 37

Method 2: MILP – Example application: AES [MWGP11]

Variables:

Sr,i,j ∈ {0, 1}: Is S-box in row i, column j in round r active?

Mr,j ∈ {0, 1}: Is MixColumns j in round r active?

Linear Program:

min
∑
r,i,j

Sr,i,j (Min # active S-boxes)

s.t. B · Mr,j ≤
∑
i

Sr,i,(i+j)%4 +
∑
i

Sr+1,i,j ≤ 8 · Mr,j (For each MixColumns)∑
i,j

S0,i,j ≥ 1 (Non-triviality)

14 / 37

Method 2: MILP – Example application: AES – Code in sagemath

#!/usr/bin/env sage
rounds = range (4)
p = MixedIntegerLinearProgram(maximization=False)
S = p.new_variable(name=’sbox’, binary=True)
M = p.new_variable(name=’mcol’, binary=True)

for r in rounds:
for j in [0..3]:

activecells = sum(S[r,i,(i+j)%4] for i in [0..3]) \
+ sum(S[r+1,i,j] for i in [0..3])

p.add_constraint (5*M[r,j] <= activecells <= 8*M[r,j])
p.add_constraint(sum(S[0,i,j] for i in [0..3] for j in [0..3]) >= 1)

p.set_objective(sum(S[r,i,j] for r in rounds for i in [0..3] \
for j in [0..3]))

p.solve()
print(p.get_objective_value (), p.get_values(S))

15 / 37

Method 2: MILP – Example application: AES

� For any k · 4 rounds, results confirm k · 25 active S-boxes from theory

¤ Model is more interesting for related-key characteristics where there may
be di�erences in the key

AddRoundKey: Model key-xor by its branch number B = 2
Model key schedule (similar operations)
Result: Fewer active S-boxes!

" Similar approaches quite popular for new designs, particularly tweakable
block ciphers (→ related-tweakey!)

16 / 37

Method 2: MILP – Advancedmodels 1

Bitwise Boolean functions: Some ciphers combine AES-like operations with
some bitwise operations, such as XOR (key/tweak schedule, Feistel, . . .).

There are many useful gadgets in MILPmodelling for translating Boolean
expressions (like A ∨ B or A⇒ B) to MILP conditions, but we are interested
in the bytewise di�erential/linear patterns of these operations, e.g.:

XOR :

inputs , → output
inputs , → output
inputs , → output
inputs , → output or

AND :

inputs , → output
inputs , → output or
inputs , → output or
inputs , → output or

These can bemodeled by their branch number (XOR: model B = 2) or by
writing Boolean conditions & translating (AND: O⇒ I1 ∨ I2, in MILP: O ≤ I1 + I2)

17 / 37

Method 2: MILP – Advancedmodels 2

Lightweight MixColumns: Many lightweight ciphers use more lightweight
MixColumnsmatrices with smaller branch number B, for example

MC =

(0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
with B = 4 (“near-MDS”)

Simple models using B = 4 or a sequence of XORs allow toomany patterns:
(truncated columns in hex notation; e.g., 5 = (0, 1, 0, 1)>) [DEKM16]

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

(a) Branch number model

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

(b) XORmodel

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

(c) Exact model
18 / 37

Method 2: MILP – Advancedmodels 2

The valid patterns (a0, . . . , a3)> → (b0, . . . , b3)> are exactly the following:

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

0 active cells

4 active cells and ai = bi

4 active cells and ai = bi ⊕ 1

6 or more active cells

∀i : ai ⊕ bi =
⊕

j aj

→
∑

i ai +
∑

i bi ≥ 6

We need to express (C0 ∧ C1 ∧ C2 ∧ C3) ∨ C4 (C0...3 for bit i of 0 4 4 , C4 for 6):

5 binary helper variables C0 . . . C4 and constraint C0 + C1 + C2 + C3 + 4 C4 ≥ 4

Condition C4: constraint
∑

i ai +
∑

i bi ≥ 6 C4
Conditions C0...3: integer helper X for XOR, constraint bi +

∑
j 6=i aj = 2 X + (1− Ci)19 / 37

Method 2: MILP – Advancedmodels 3

S-box details and bitwise models: Sometimes, patterns of active S-boxes
are not su�icient for good bounds – think of ARX ciphers or PRESENT:

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

This would require a linear model of the S-box DDT, which is usually more
complex than the previous MixColumns example, particularly for large S-boxes.

There are tools/algorithms that can perform such a translation
Vertex representation (table)→ Half-space representation (linear inequalities)

20 / 37

Method 2: MILP – Properties

) Solves an optimization problem

Ý Useful to prove bounds for “strongly aligned”, AES-like ciphers

Cost evaluation as a (weighted) sumworks nicely
Can have more complex cost metrics using weights
O�en works very e�iciently even for full-round ciphers

Ä Not so useful for complex bitwise descriptions and characteristics

Language of linear inequalities is not so natural for crypto
Toomany integer variables lead to bad solver performance

21 / 37

Method 3: SAT/SMT/CP – Di�erent Levels of Convenience

1 SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF∧
i

∨
j

`i,j with literals `i,j ∈ {vi,j,¬vi,j}

Any set of Boolean constraints can (and needs to) be translated to CNF.
Example solvers: MiniSAT, lingeling, and amyriad others

2 SMT (Sat. Modulo Theories) Solvers: Accept a more general grammar
including bitvector operations such as integer addition. Solvers o�en
translate these into CNF and feed the result to SAT solvers.
Example solvers: STP (“Simple Theorem Prover”), . . .

3 CP (Constraint Programming) Solvers: Accept an evenmore general
grammar (depends on solver). Example solvers: Z3, Choco, . . .

22 / 37

Method 3: SAT/SMT/CP – Properties

) Solves a satisfiability problem, may not be optimal

“Emulate” optimization: “is there a solution better than X, X + 1, X + 2, . . .?”

Ý Useful to find valid solutions under some constraints

Finding characteristics that follow a given truncated pattern
Finding solutions for other crypto problems (preimage, . . .)
Well-suited for modelling the Boolean networks in ciphers (except XORs)

Ä Not so e�icient for somemore complex problems

Not toomany rounds (too many variables!)
Not so good for modelling a cost sum or optimization

23 / 37

Method 4: Dedicated Guess-and-Determine Search

Guess-and-Determine Search is a general search strategy

Traverse search tree to find a valid solution
SAT solvers use it on CNF level
This is an example on small (di�erential) circuits

•1
•x3

0•x17

0• 1 •

nltool: Automated search for characteristics and solutions

Hash collision search
Application example: SHA-2 [MNS11; MNS13; DEM15]

3

∆X

0
24 / 37

Generalized Di�erences: Motivation [DR06]

1. ARX designs with modular addition and XOR ofw-bit words:

bitwise signed di�erence ∆± ∈ {0,+1,−1}w

uniquely determines both

modular di�erence ∆� =
∑
i

∆±i 2
i ∈ Z2w

bitwise xor di�erence ∆⊕ = (|∆±i |)i

2. Search progress: Represent all stages of the evolution from a starting point
(where only some zero-di�erences are fixed) via the characteristic (of
signed di�erences) to the message pair (of fixed bit values).

25 / 37

Generalized Di�erences

Let (xj, x∗j) be a pair of bits. The generalized condition∇(xj, xj∗) constrains the
possible values of (xj, x∗j) to a subset of all pairs {(1, 1), (0, 1), (1, 0), (0, 0)}

• = is-allowed and ◦ = is-not-allowed

∇(zj, zj∗) ∇(zj, zj∗) ∇(zj, zj∗) ∇(zj, zj∗)
0 = ◦◦◦• - = •◦◦• 3 = ◦◦•• 7 = ◦•••
u = ◦◦•◦ x = ◦••◦ 5 = ◦•◦• B = •◦••
n = ◦•◦◦ # = ◦◦◦◦ A = •◦•◦ D = ••◦•
1 = •◦◦◦ ? = •••• C = ••◦◦ E = •••◦

Search: start from undetermined bits and refine until all are ∈ {0,1,n,u}
26 / 37

Guess-and-Determine Search Algorithm

while there are undetermined bits do
Decision (Guessing)

1. Pick an undetermined bit

2. Constrain this bit
Deduction (Propagating)

3. Propagate the new information to other variables and equations

4. if no inconsistency is detected, goto step 1
Correction (Backtracking)

5. if possible, apply a di�erent constraint to this bit, goto step 3

6. else undo guesses until this critical bit can be resolved

27 / 37

Bitsliced Propagation 1

Divide the crypto circuit into small “bitslices” with few involved bits

Example: Linear layer

x0

y0

⊕

x1

y1

⊕

x2

y2

⊕

x3

y3

⊕

x4

y4

⊕

· · ·

· · ·
· · ·

⊕

x63

y63

Example: Modular addition z = x + y mod 2w⇒ zi = xi ⊕ yi ⊕ ci with carry bit ci

28 / 37

Bitsliced Propagation 2

Example: Bit-XOR operation y = f (x) = x1 ⊕ x2 with

∇(x, x∗) = [?x], ∇(y, y∗) = [-], or in short, ∇(z, z∗) = [?x-].

This generalized di�erence allows 16 (of 43 = 64) solutions (z, z∗) = (x1x2y, x∗1x∗2y∗):
(000, 010), (000, 110), (100, 010), (100, 110),
(010, 000), (010, 100), (110, 000), (110, 100),
(001, 011), (001, 111), (101, 011), (101, 111),
(011, 001), (011, 101), (111, 001), (111, 101).

However, only 4 of the 12 are valid input and output combinations for f :
(000, 110), (110, 000), (101, 011), (011, 101).

Theminimal generalized di�erence that contains all the above true solutions is

∇(z, z∗) = [xx-].

29 / 37

Branching & Backtracking

????
x---

???-
x---

???x
x---

####
####

####
####

####
####

-xxx
x---

-xxn
x---

x0 = - x0 = x

x1 = - x1 = x x1 = - x1 = x

x0 = n

... 30 / 37

Example: SHA-2 – Compression Function

SHA-256

64
st
ep
s

hi−1 mi

hi

256 512

256

SHA-512

80
st
ep
s

hi−1 mi

hi

512 1024

512

31 / 37

Example: SHA-2 – Round Function (64 or 80 Rounds)

Ai−1 Bi−1 Ci−1 Di−1 Ei−1 Fi−1 Gi−1 Hi−1

−Σ0

ma
j

Σ1

if

Ai Bi Ci Di Ei Fi Gi FiAi Ei

Ki (round constant)

Wi (message word)

(8× {32, 64}-bit state)

maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)
if(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Σ0(x) = (x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22) (for SHA-256)
Σ1(x) = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25) (for SHA-256) 32 / 37

Example: SHA-2 – Round Function, Alternative Representation

Recursive update patterns for Ai, Ei, andWi using :

Ai update

i
i−1
i−2
i−3
i−4

Ai Ei Wi

Ei update

i
i−1
i−2
i−3
i−4

Ai Ei Wi

Wi expansion

i
i−2

i−7

i−15
i−16

Ai Ei Wi

33 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

IV f h1

m1

Shows state words Ai,
Ei,Wi

Inputs IV,m1

Output h1

34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Starting point:

0. “Local Collision”
with few active
message words

Active words with
di�erences [?]

No di�erences [-]
(cancellation required)

No di�erences [-]

34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Search strategy:

1. Fix high-probability parts

2. Fix signed di�erences

3. Find message pair

Active words with some
di�erences [?]

Active bits [n,u,x]

Inactive bits [-]

Fixed inactive bits [0,1]
34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Search strategy:

1. Fix high-probability parts

2. Fix signed di�erences

3. Find message pair

Active words with some
di�erences [?]

Active bits [n,u]

Inactive bits [-]

Fixed inactive bits [0,1]
34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Search strategy:

1. Fix high-probability parts

2. Fix signed di�erences

3. Find message pair

Active words with some
di�erences [?]

Active bits [n,u]

Inactive bits [-]

Fixed inactive bits [0,1]
34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Search strategy:

1. Fix high-probability parts

2. Fix signed di�erences

3. Find message pair

Active words with some
di�erences [?]

Active bits [n,u]

Inactive bits [-]

Fixed inactive bits [0,1]
34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Search strategy:

1. Fix high-probability parts

2. Fix signed di�erences

3. Find message pair

Active words with some
di�erences [?]

Active bits [n,u]

Inactive bits [-]

Fixed inactive bits [0,1]
34 / 37

Example: Semi-Free-Start Collision for 39 / 80 steps of SHA-512

-4
-3
-2
-1

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IV(A) IV(E)

m0

Ai Ei Wi

h(A)1 h(E)1

Search strategy:

1. Fix high-probability parts

2. Fix signed di�erences

3. Find message pair

Active words with some
di�erences [?]

Active bits [n,u]

Inactive bits [-]

Fixed inactive bits [0,1]
34 / 37

Improving Guess & Determine?

Problem description

Starting point and high-level strategy
Hash function description

Guessing strategy, branching rules

Which variable to pick first? Which value to guess first for this variable?

Propagation

How to determine implications of a guess?
How to detect contradictions?

Backtracking

Howmany guesses to undo? When to restart?
35 / 37

Conclusion

µ Computer-Aided Cryptanalysis

3 Tools for Finding Di�erential Characteristics
Method 1: Matsui’s branch-and-bound algorithm
Method 2: Mixed-Integer Linear Programming (MILP)
Method 3: Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)
Method 4: Dedicated Guess-and-Determine search

36 / 37

Questions
ä

Questions you should be able to answer

1. What are the respective advantages/disadvantages of searching
characteristics by hand, using general-purpose solvers, or using dedicated
solvers?

2. Explain Matui’s Branch-and-Bound algorithm and discuss its
advantages/disadvantages.

3. Model the problem of bounding the number of active S-boxes of AES as a
Mixed-Integer Linear Program (MILP). Explain the model.

4. Outline the dedicated guess-and-determine search algorithm discussed in
the lecture, and explain how it propagates information.

37 / 37

Bibliography I

[DEKM16] Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel.
Practical Key-Recovery Attack on MANTIS5. IACR Transactions on Symmetric
Cryptology 2016.2 (2016), pp. 248–260. DOI:
10.13154/tosc.v2016.i2.248-260.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of
SHA-512/224 and SHA-512/256. Advances in Cryptology – ASIACRYPT 2015.
Vol. 9453. LNCS. Springer, 2015, pp. 612–630. DOI:
10.1007/978-3-662-48800-3_25.

[DR06] Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteristics:
General Results and Applications. Advances in Cryptology – ASIACRYPT 2006.
Vol. 4284. LNCS. Springer, 2006, pp. 1–20. DOI: 10.1007/11935230_1.

[Mat94] Mitsuru Matsui.On Correlation Between the Order of S-boxes and the Strength
of DES. Advances in Cryptology – EUROCRYPT ’94. Vol. 950. LNCS. Springer, 1994,
pp. 366–375. DOI: 10.1007/BFb0053451.

https://doi.org/10.13154/tosc.v2016.i2.248-260
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/BFb0053451

Bibliography II

[MNS11] Florian Mendel, Tomislav Nad, and Martin Schlä�er. Finding SHA-2
Characteristics: Searching through a Minefield of Contradictions. Advances in
Cryptology – ASIACRYPT 2011. Vol. 7073. LNCS. Springer, 2011, pp. 288–307. DOI:
10.1007/978-3-642-25385-0_16.

[MNS13] Florian Mendel, Tomislav Nad, and Martin Schlä�er. Improving Local Collisions:
New Attacks on Reduced SHA-256. Advances in Cryptology – EUROCRYPT 2013.
Vol. 7881. LNCS. Springer, 2013, pp. 262–278. DOI:
10.1007/978-3-642-38348-9_16.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Di�erential and Linear
Cryptanalysis Using Mixed-Integer Linear Programming. Information Security
and Cryptology – Inscrypt 2011. Vol. 7537. LNCS. Springer, 2011, pp. 57–76. DOI:
10.1007/978-3-642-34704-7_5.

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-34704-7_5

	Computer-Aided Cryptanalysis
	
	Tools for Finding Differential Characteristics
	
	Method 1: Matsui's branch-and-bound algorithm
	Method 2: Mixed-Integer Linear Programming (MILP)
	Method 3: Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)
	Method 4: Dedicated Guess-and-Determine search

	Questions
	
	References

