Algebraic Cryptanalysis

SCIENCE PASSION TECHNOLOGY

Hosein Hadipour

Cryptanalysis – ST 2024

> www.iaik.tugraz.at/cryptanalysis

Outside-in Approach in Algebraic Cryptanalysis

Algebraic Cryptanalysis - Outside-in Approach

- Integral attack
- Cube attack on stream ciphers and sponge functions

Symbolic Representation of Boolean Functions

Notations

- \mathbb{F}_2 : Field with two elements
- \mathbb{F}_2^n : Vector space of dimension *n* over \mathbb{F}_2
- $\boldsymbol{u} = (u_0, \cdots, u_{n-1})$: Bit vectors in \mathbb{F}_2^2
- **e**_i: *n*-bit unit vector with 1 at position *i* and 0 elsewhere
- A partial order over \mathbb{F}_2^n : For any $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{F}_2^n$: $\boldsymbol{u} \leq \boldsymbol{v}$ if $u_i \leq v_i$ for all i

• For all
$$\boldsymbol{x}, \boldsymbol{u} \in \mathbb{F}_2^n$$
: if $\boldsymbol{x} < \boldsymbol{u}$, then $\boldsymbol{x}^{\boldsymbol{u}} = 0$

- For all $\pmb{x}, \pmb{u} \in \mathbb{F}_2^n$: if $\pmb{x} = \pmb{u}$, then $\pmb{x}^{\pmb{u}} = 1$
- $\mathbb{F}_2[x_0, \cdots, x_{n-1}]$: Ring of polynomials with *n* variables over \mathbb{F}_2
- Monomial: $\mathbf{x}^{\boldsymbol{u}} = \pi_{\boldsymbol{u}}(\mathbf{x}) = \prod_{i=0}^{n-1} x_i^{u_i}$, e.g., $(x_2, x_1, x_0)^{(1,0,1)} = x_2 x_0$

Different Representations of Boolean Functions

- Truth Table (TT)
- Logical Expression
 - CNF:

$$egin{aligned} &(x_2 ee x_1 ee \neg x_0) \land (x_2 ee \neg x_1 ee x_0) \land \ &(\neg x_2 ee \neg x_1 ee x_0) \land (\neg x_2 ee \neg x_1 ee \neg x_0) \end{aligned}$$

DNF:

$$(\neg x_2 \land \neg x_1 \land \neg x_0) \lor (\neg x_2 \land x_1 \land x_0) \lor (x_2 \land \neg x_1 \land \neg x_0) \lor (x_2 \land \neg x_1 \land x_0)$$

Algebraic Normal Form (ANF)

$$f(x_2, x_1, x_0) = x_0 \cdot x_2 + x_0 + x_1 + 1$$

<i>x</i> ₂	<i>X</i> ₁	<i>x</i> ₀	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Algebraic Normal Form (ANF)

ANF

A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ can be uniquely represented by a polynomial in $\frac{\mathbb{F}_2[x_0,...,x_{n-1}]}{\langle x_0^2 + x_0,...,x_{n-1}^2 + x_{n-1} \rangle}$:

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}, \quad \text{where} \quad a_{\mathbf{u}} \in \mathbb{F}_2, \text{ and } \mathbf{x}^{\mathbf{u}} = x_0^{u_0} \cdots x_{n-1}^{u_{n-1}}.$$

✓ If f(x) = ∑_{u∈ℝⁿ₂} a_u · x^u, and x ≤ u iff x_i ≤ u_i for all i, then for all u ∈ ℝⁿ₂:
✓ a_u = ∑_{x≤u} f(x)
✓ f(u) = ∑_{x≤u} a_x

• If
$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}$$
, then for all $\mathbf{u} \in \mathbb{F}_2^n$:
• $a_{\mathbf{u}} = \sum_{\mathbf{x} \le \mathbf{u}} f(\mathbf{x})$

•
$$f(\boldsymbol{u}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} a_{\boldsymbol{x}}$$

 $f(x_1, x_0) =$

• If
$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}$$
, then for all $\mathbf{u} \in \mathbb{F}_2^n$:
• $a_{\mathbf{u}} = \sum_{\mathbf{x} \le \mathbf{u}} f(\mathbf{x})$

•
$$f(\boldsymbol{u}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} a_{\boldsymbol{x}}$$

 $f(x_1, x_0) =$

• If
$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}$$
, then for all $\mathbf{u} \in \mathbb{F}_2^n$:
• $a_{\mathbf{u}} = \sum_{\mathbf{x} \le \mathbf{u}} f(\mathbf{x})$

•
$$f(\boldsymbol{u}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} a_{\boldsymbol{x}}$$

 $f(x_1, x_0) = 1 +$

$$If f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}, \text{ then for all } \mathbf{u} \in \mathbb{F}_2^n: \\ a_{\mathbf{u}} = \sum_{\mathbf{x} \le \mathbf{u}} f(\mathbf{x})$$

•
$$f(\boldsymbol{u}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} a_{\boldsymbol{x}}$$

$$f(x_1, x_0) = 1 + x_0 +$$

$$If f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}, \text{ then for all } \mathbf{u} \in \mathbb{F}_2^n: \\ a_{\mathbf{u}} = \sum_{\mathbf{x} \le \mathbf{u}} f(\mathbf{x})$$

•
$$f(\boldsymbol{u}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} a_{\boldsymbol{x}}$$

$$f(x_1, x_0) = 1 + x_0 + x_1 +$$

$$If f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \cdot \mathbf{x}^{\mathbf{u}}, \text{ then for all } \mathbf{u} \in \mathbb{F}_2^n: \\ a_{\mathbf{u}} = \sum_{\mathbf{x} \le \mathbf{u}} f(\mathbf{x})$$

•
$$f(\boldsymbol{u}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} a_{\boldsymbol{x}}$$

$$f(x_1, x_0) = 1 + x_0 + x_1 + x_1 x_0$$

Deriving ANF in SageMath

- sage: from sage.crypto.boolean_function import BooleanFunction as BF
- ² sage: f = BF([0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
- 3 sage: g = f.algebraic_normal_form(); g
- ${}_{4} \quad x0*x2*x3 \ + \ x0*x2 \ + \ x0*x3 \ + \ x1*x2*x3 \ + \ x1*x2 \ + \ x1*x3 \ + \ x1$
- 5 sage: g.variables()
- 6 (x0, x1, x2, x3)
- 7 sage: g.monomials()
- 8 [x0*x2*x3, x0*x2, x0*x3, x1*x2*x3, x1*x2, x1*x3, x1]
- 9 sage: g.degree()
- 10 3

Integral Distinguishers From the Algebraic Perspective

Integral Distinguisher and The Coefficients of ANF

 $\widehat{\mathbf{C}}_{\boldsymbol{u}} = \{ \boldsymbol{x} \in \mathbb{F}_2^n \, | \, \boldsymbol{x} \leq \boldsymbol{u} \}$

 $\bigcirc a_{u}(\mathbf{k}) = \sum_{\mathbf{x} \leq u} f(\mathbf{k}, \mathbf{x})$

Which monomial is key-independent in the ANF?

$$retarrow zero-sum: \exists u, s.t. \forall k : a_u(k) = 0$$

$$\clubsuit$$
 one-sum: $\exists u, s.t. \forall k : a_u(k) = 1$

Monomial Prediction and Our SAT Model

Core Idea of Monomial Prediction [HSWW20]

Core Idea

The absence (or presence) of a monomial in the ANF of a composite function can be checked by tracking the propagation of the given monomial through the building blocks of composite functions.

Monomial Trail and Integral Distinguisher

Monomial Trail and Integral Distinguisher

 $\mathbf{k}^{w}\mathbf{x}^{u} \not\rightarrow \mathbf{y}^{v} \Rightarrow \mathbf{k}^{w}\mathbf{x}^{u} \not\rightarrow \mathbf{y}^{v}$

Monomial Trail and Integral Distinguisher

From Monomial Trails to Integral Distinguisher

From Monomial Prediction to SAT Problem

P Model the propagation of monomial trails through the building blocks by a CNF clause

- 📢 Main variables are the monomial exponents, i.e., **u**, **w**, **v**, . . . not **x**, **k**, **y**, . . .
- \mathbf{t} Fix **u** to a certain vector and set **v** to \mathbf{e}_i (**w** should be a free variable but non-zero)
- Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

Monomial Prediction Table (MPT)

S Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ be an *m*-bit to *n*-bit vectorial Boolean function. Then MPT $(\mathbf{u}, \mathbf{v}) = 1$ if $\mathbf{x}^{\mathbf{u}} \xrightarrow{f} \mathbf{y}^{\mathbf{v}}$, and MPT $(\mathbf{u}, \mathbf{v}) = 0$ otherwise.

~	S(v)																	
~	S(x)	u\v	0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
0	с																	
1	a	0	1	•	•	·	1	·	·	·	1	·	·	·	1	·	·	•
2	d	1	•	•	1	·	1	·	·	·	·	·	1	·	1	·	·	•
3	3	2	•	1	•	·	·	1	·	·	·	1	·	·	·	1	·	•
4	0	3	•	·	·	1	·	1	·	·	1	1	1	·	·	1	·	•
4	e	4			1				1				1				1	
5	b	5		1	1	1			1			1	1	1			1	
6	f	6		-	-	1			-	1		-	-	1			-	1
7	7	7		1			1	1	1	-		1						1
8	8	8					1	-							1			-
9	9	9		1	1		1					1	1		1			
а	1	a						1			1	1				1		
b	5	b	•	1		1	1	•	·	·	1	·	1	·	•	1	·	
6	0	с	•	•	1	•	•	•	1	•	1	•	1	•	•	·	1	•
	0	d				1			1				1	1			1	
d	2	-		1		1	1			1	1			1				1
е	4	f		1	÷	1	1	÷		1	1			1	÷	÷	÷	1
f	6		· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1

Monomial Prediction Table (MPT)

 $x \mid S(x)$

c 0 d 2 e 4 f 6

S Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ be an *m*-bit to *n*-bit vectorial Boolean function. Then MPT $(\mathbf{u}, \mathbf{v}) = 1$ if $\mathbf{x}^{\mathbf{u}} \xrightarrow{f} \mathbf{y}^{\mathbf{v}}$, and MPT $(\mathbf{u}, \mathbf{v}) = 0$ otherwise.

0	с	$(u_2 \vee \neg v_1 \vee \neg v_3)$	$\wedge (\neg u_1 \vee \neg v_0 \vee \neg v_1 \vee v_2)$	$\wedge (\neg u_0 \lor \neg u_1 \lor \neg u_2 \lor \neg v_2 \lor v_3)$
1	a	$\wedge (u_2 \vee u_3 \vee \neg v_3)$	$\wedge (\neg u_0 \lor \neg u_1 \lor \neg u_3 \lor v_2)$	$\wedge (\neg u_0 \lor \neg u_3 \lor v_0 \lor \neg v_1 \lor \neg v_3)$
2	d	$\wedge (u_1 \vee \neg v_1 \vee \neg v_2)$	$\wedge (\neg u_1 \lor u_2 \lor v_0 \lor v_2 \lor v_3)$	$\wedge (\neg u_0 \lor \neg u_1 \lor \neg u_3 \lor v_0 \lor v_1 \lor v_3)$
3	3	$\wedge (\mu_1 \vee \mu_2 \vee \neg \nu_2)$	$\wedge (u_2 \vee \neg u_2 \vee v_1 \vee v_2 \vee v_2)$	$\wedge (\neg u_0 \lor \neg u_2 \lor \neg u_3 \lor \neg v_0 \lor v_1 \lor \neg v_3)$
4	е	, ((d 1 + d 3 + + d 2)	, (u ₂ , u ₃ , i ₁ , i ₂ , i ₃)	, (
5	ъ	$\wedge (u_0 \vee \neg u_2 \vee u_3 \vee v_3)$	$\wedge (u_1 \vee \neg v_0 \vee \neg v_2 \vee \neg v_3)$	$\wedge (\neg u_1 \lor \neg u_2 \lor \neg u_3 \lor v_1 \lor \neg v_2)$
6	f	$\wedge (u_0 \vee \neg u_1 \vee u_3 \vee v_2)$	$\wedge (\neg u_0 \lor u_1 \lor u_3 \lor v_0 \lor v_1)$	$\wedge (\neg u_1 \lor \neg u_2 \lor \neg u_3 \lor v_1 \lor v_3)$
7	7	$\wedge (\neg u_2 \lor v_0 \lor v_1 \lor v_3)$	$\wedge (\neg u_1 \lor u_3 \lor \neg v_0 \lor v_2 \lor \neg v_3)$	$\wedge (u_0 \vee u_1 \vee \neg u_3 \vee v_0 \vee v_1 \vee v_2)$
8	8	$\wedge (u_0 \vee u_1 \vee u_2 \vee \neg v_3)$	$\wedge (u_0 \vee u_1 \vee \neg u_2 \vee \neg v_1 \vee v_3)$	$\wedge (\neg u_3 \lor v_0 \lor \neg v_1 \lor \neg v_2 \lor \neg v_3)$
9	9	$\wedge (u_1 \lor u_2 \lor \neg v_2 \lor \neg v_3)$	$\wedge (u_1 \vee \neg u_2 \vee u_3 \vee \neg v_1 \vee v_3)$	$\wedge (\neg u_0 \lor u_1 \lor u_2 \lor v_1 \lor v_2 \lor v_3)$
а	1	(1 2 2 3)		
b	5	$\wedge (\neg u_2 \lor \neg v_0 \lor \neg v_1 \lor v_3)$	$\wedge (\neg u_1 \vee u_3 \vee \neg v_1 \vee v_2 \vee \neg v_3).$	

Sbox Analyzer: https://github.com/hadipourh/sboxanalyzer

Application to Integral Analysis of WARP

WARP[BBI+20]

- Proposed in SAC 2020 [BBI+20] as the lightweight alternative of AES-128
- 128-bit block/key size, and 41 rounds (40.5 rounds)
- Splits 128-bit K into two halves $K^{(0)} || K^{(1)}$ and uses $K^{(r-1 \mod 2)}$ in the rth round

22-round Integral Distinguisher for WARP

The best previous integral distinguisher: 20 rounds [BBI+20]

(2)
$$\xrightarrow{22 \text{ rounds}}$$
 (20, 21, 22, 23, 118, 60, 61, 62, 63)

• Our tool: https://github.com/hadipourh/mpt

red U

Inside-out Approach for Algebraic Cryptanalysis

Algebraic Cryptanalysis - Inside-out Approach

- Attacks based on Gröbner Basis (GB)
- Attacks based on SAT solvers

Deriving the IO Relations for a Vectorial Boolean Function

Consider this 2-bit S-box: [1, 0, 3, 2]

	(1	1	1	1	1 \	(1)	0	0	0	$x_1x_0 + x_1 + x_0 + 1$	١
	0	0	1	1	<i>x</i> ₁	0	1	0	0	$x_1x_0+x_0$	
$x_1 x_0$	0	1	0	1	<i>x</i> ₀	0	0	1	0	$x_1x_0+x_1$	
\downarrow \downarrow	0	0	1	1	y_1	0	0	0	1	X_1X_0	
	1	0	1	0	y_0	0	0	0	0	$x_0 + y_0 + 1$	
S	0	0	0	1	X_1X_0	0	0	0	0	$x_1 + y_1$	
	0	0	1	1	x_1y_1	0	0	0	0	$x_1y_1 + x_1$	
	0	0	1	0	x_1y_0	0	0	0	0	$x_1x_0 + x_1y_0 + x_1$	
$y_1 y_0$	0	0	0	1	x_0y_1	0	0	0	0	$x_1x_0+x_0y_1$	
	0	0	0	0	x_0y_0	0	0	0	0	x_0y_0	
	0	0	1	0	y_1y_0	0	0	0	0	$x_1x_0 + x_1 + y_1y_0$	J

sage.crypto.sboxes.SBox.polynomials()

Gröbner Basis

20

Ring of Multivariate Polynomials over a Finite Field

- \mathbb{F}_q a finite field of order q
- Ring of multivariate polynomials over \mathbb{F}_q : $P = \mathbb{F}_q[x_1, \dots, x_n]$

$$P = \{\sum a_u x^u \mid n \in \mathbb{N}, a_u \in \mathbb{F}_q, u \in \mathbb{Z}_{\geq 0}^n\}$$

- Monomial ordering: decides how we compare monomials
- sage: P.<x, y, z> = PolynomialRing(GF(127), order='lex')

$$3 \quad 62 * x * y - 29 * y * z + 35 * z^2 - 54 * z - 55$$

4 sage:
$$x*y > y^3 #$$
 variables then degree

5 True

- 6 sage: P.<x, y, z> = PolynomialRing(GF(127), order='deglex')
- 7 sage: x*y > y^3 # degree then variables
- 8 False
- 9 sage: f.monomials(), f.lm()
- 10 ([x*y, y*z, z², z, 1], x*y)

Ideals and Varieties

- Ideal: $\mathcal{I} \subset P$, such that for all $f, g \in \mathcal{I}$, and all $h \in P$: $f + gh \in \mathcal{I}$
- $\langle f_1, \ldots, f_m \rangle$ is the ideal spanned by $F = \{f_1, \ldots, f_m\}$

$$\mathsf{Id}(F) = \left\{ \sum_{i=1}^n r_i \cdot f_i \ \bigg| \ n \in \mathbb{N}, h_i \in R, f_i \in F \right\}.$$

- Variety of an ideal $\mathcal{I}: \mathcal{V}(\mathcal{I}) = \{x \in \mathbb{F}_q^n \mid f(x) = 0 \text{ for all } f \in \mathcal{I}\}$
- Zero-dimensional variety: Contains only finitely many points ($\dim(V) = 0$)
- 1 sage: P.<x, y, z> = PolynomialRing(GF(127), order='lex')
- 2 Defining x, y, z
- sage: I = ideal(x*y + z, y^3 + 1, $z^2 5*x 1$)
- 4 sage: $(x*y + z) + P.random_element()*(y^3 + 1)$ in I
- 5 True
- 6 sage: I.variety()
- 7 [{z: 21, y: 108, x: 88}, {z: 6, y: 108, x: 7}]

Ideal Membership in $\mathbb{F}_q[x]$

• Assume that $P = \mathbb{F}_q[x]$, and $I = \langle f \rangle$, where $f \in P$. Check if $f(x) \in I$.

•
$$\forall f(x), g(x) \in P \exists q(x), r(x) \in P$$
:

$$g(x) = q(x)f(x) + r(x)$$
, where $r = 0$, or $\deg(r(x)) < \deg(f(x))$

Divide
$$g(x)$$
 by $f(x)$. If $r(x) = 0$, then $f \in I$.

• What if we want to check if $g \in I = \langle f_1, \ldots, f_m \rangle$, where $g, f_1, \ldots, f_m \in P = \mathbb{F}_q[x_1, \ldots, x_n]$?

Ideal Membership in $\mathbb{F}_q[x_1, \ldots, x_n]$

- To check if $f \in \langle f_1, \ldots, f_m \rangle$ we follow the same idea.
- Division Algorithm: Represent *f* in the form:

$$f = q_1 f_1 + \cdots + q_m f_m + r$$
, where $r = 0$

• r = 0, or no terms of r is divisible by any of $LT(f_1), \ldots, LT(f_m)$

sage: P.<x, y> = PolynomialRing(GF(7), order='deglex')

2 sage: f1, f2 =
$$x*y - 1$$
, $y^2 - 1$

$$3$$
 sage: f = x*y^2 - x

5 -x + y

6 sage: f.reduce([f2]).reduce([f1])

7 0

- Remainder is not unique!
- We can not decide if $f \in \langle f_1, \ldots, f_m \rangle$ based on any basis.

Gröbner Basis

• Let $I \subseteq P = \mathbb{F}_q[x_1, \ldots, x_n]$ be an ideal

- A Gröbner basis $G = \{g_1, \ldots, g_t\}$ for *I* is a special basis:
 - f % G is unique regardless of the order of elements in G
 - It can solve the ideal membership problem: $f \in I \iff f \% G = 0$

```
sage: P.<x, y> = PolynomialRing(GF(7), order='deglex')
1
  sage: f1, f2 = x*y - 1, y^2 - 1
2
   sage: I = ideal([f1, f2])
3
   sage: f = x * y^2 - x
4
   sage: g1, g2 = I.groebner_basis()
5
   sage: f.reduce([g1]).reduce([g2]) == f.reduce([g2]).reduce([g1]) == 0
6
   True
7
  sage: f in I
8
   True
q
```

Gröbner Basis and Solving System of Polynomial Equations

- $F = \{f_1, \ldots, f_n\}$ be a system of polynomial equations in *n* variables
- *F* is linear: Gaussian elimination

sage: P.<x, y, z> = PolynomialRing(GF(7), order='deglex')

2 sage: F = Sequence([-3*y + x, -2*x - y - 3*z + 2, x + y + 2*z - 1])

- 4 sage: A.echelonize() # Echelon form
- 5 sage: (A*v).T
- 6 [x + 2, y + 3, z 3]
- Let us compute the Gröbner basis of *F*:
- sage: F.groebner_basis()
- $_{2}$ [x + 2, y + 3, z 3]
- It is not by accident! Gröbner basis generalizes row echelon form over \mathbb{F}_q^n

Gröbner Basis - Generalizing Row Echelon Form I

Reduced Gröbner Basis

The reduced Gröbner basis $G = \{g_1, g_2, \dots, g_n\}$ (in a specific term order) generating the zero-dimensional ideal *l* is of the form

$$ar{g} = egin{cases} g_1 &= x_1^d + h_1(x_1), \ g_2 &= x_2 + h_2(x_1), \ &dots \ g_n &= x_n + h_n(x_1), \end{cases}$$

where h_i is a polynomial in x_1 of degree at most d - 1.

- Note that g_1 is now a univariate equation and we can solve it by factorization!
- Use the result to solve for the other variables

Gröbner Basis - Example

• Find the zeros (variety) of $I = \langle x + y + z, xy + xz + yz, xyz - 1 \rangle \subseteq \mathbb{F}_{127}[x, y, z]$

```
sage: P_{x}, y_{z} = PolynomialRing(GF(127), order='lex')
1
   sage: I = ideal([x + y + z, x*y + x*z + y*z, x*y*z - 1])
2
3 sage: G = I.groebner_basis()
4 sage: for f in G: print(f)
5 x + y + z
6 \quad v^2 + v z + z^2
7 z^3 - 1
   sage: V = I.variety(); V
8
   [{z: 19, y: 1, x: 107},
9
  {z: 19, y: 107, x: 1},
10
11 {z: 1, y: 19, x: 107},
  {z: 1, y: 107, x: 19},
12
13 {z: 107, y: 19, x: 1},
14 {z: 107, y: 1, x: 19}]
```

Gröbner Basis - Systems with 0 or 1 Solution

• If the system has 1 solution:

$$G = \begin{cases} g_1 &= x_1 - a_1, \\ g_2 &= x_2 - a_2, \\ &\vdots \\ g_n &= x_n - a_n, \end{cases}$$

where $(a_1, \ldots, a_n) \in \mathbb{F}_q^n$

If the system has no solution

$$G=\langle 1
angle$$

Gröbner Basis - Complexity

- A fundamental tool in computational algebraic geometry (1965) [Buc65]
- It solves the ideal membership problem and multivariate polynomial equations, and . . .
- General algorithms, for any input system:
 - Buchberger, F4, F5: They always terminate and give the Gröbner basis
 - But, the time is hard to predict for any instances
- A hard problem:
 - Ideal membership problem is an EXPSPACE-Complete problem
 - Existence of solution to a system of polynomial equations over a finite field is NP-Complete [FY79]

Algebraic Cryptanalysis of CTC Block Cipher

CTC Block Cipher [Cou06; Cou07]

https://github.com/hadipourh/CTC2-Fast-Algebraic-Attack

Algebraic Cryptanalysis – Summary

- It is originally a deterministic Attack
- Exploit the algebraic representation of cryptographic primitives
- There are many approaches, we discussed only two:
 - Investigating the algebraic representation to find some weaknesses
 - Expressing the cipher as a system of polynomial equations and solving it
- We can take advantage of general-purpose solvers, e.g., Gröbner basis, SAT, etc.
- Work in many different fields $(\mathbb{F}_2, \mathbb{F}_p, \mathbb{F}_{2^n})$

Questions

- 1. What are some differences between statistical and algebraic attacks?
- 2. What is the core idea of the monomial prediction technique?
- 3. How does the monomial prediction technique help us find an integral distinguisher?
- 4. If certain variables corresponding to the secret key are absent in the ANF (Algebraic Normal Form) of the ciphertext bit, how can you exploit this to find a zero-sum distinguisher or use a cube attack?
- 5. Why can Gröbner basis be used to solve systems of polynomial equations?

Bibliography I

- [BBI+20] Subhadeep Banik, Zhenzhen Bao, Takanori Isobe, Hiroyasu Kubo, Fukang Liu, Kazuhiko Minematsu, Kosei Sakamoto, Nao Shibata, and Maki Shigeri. WARP: Revisiting GFN for Lightweight 128-Bit Block Cipher. SAC 2020. Vol. 12804. LNCS. Springer, 2020, pp. 535–564. DOI: 10.1007/978-3-030-81652-0_21.
- [Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis. University of Innsbruck, 1965.
- [Cou06] Nicolas T. Courtois. How Fast can be Algebraic Attacks on Block Ciphers ? Cryptology ePrint Archive, Paper 2006/168. 2006. URL: https://eprint.iacr.org/2006/168.
- [Cou07] Nicolas T. Courtois. CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited. Cryptology ePrint Archive, Paper 2007/152. 2007. URL: https://eprint.iacr.org/2007/152.

Bibliography II

- [FY79] Aviezri S Fraenkel and Yaacov Yesha. Complexity of problems in games, graphs and algebraic equations. Discrete Applied Mathematics 1.1-2 (1979), pp. 15–30.
- [HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An Algebraic Formulation of the Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent Sums. ASIACRYPT 2020. Vol. 12491. LNCS. Springer, 2020, pp. 446–476. DOI: 10.1007/978-3-030-64837-4_15.

Convert ANF to CNF

 By ANF-to-CNF conversion, we can use SAT solvers to solve (Boolean) polynomial equations:

```
sage: B = BooleanPolynomialRing(names=["a", "b", "c"]); B.inject_variables()
1
      Defining a, b, c
2
      sage: from sage.sat.converters.polybori import CNFEncoder
3
      sage: from sage.sat.solvers.dimacs import DIMACS
4
      sage: fn = tmp_filename(); solver = DIMACS(filename=fn)
5
      sage: e = CNFEncoder(solver, B)
6
      sage: e([a*b + a + 1, a*c + b])
7
      [None, a, b, c]
8
      sage: = solver.write()
9
      sage: print(open(fn).read())
10
      p cnf 3 5
11
12
    -2.0
    1 0
13
14 -3 -1 2 0
15 -2 1 0
   -2 3 0
16
```

A dedicated open-source tool: Bosphorus