Tools for Cryptanalysis

宋凌

Topics

- What we have known
- Differential/linear trails
- Computation of the differential probability or linear correlation
- What we will study
- Search for good differential/linear trails
- Aid with various tools

Tools for DC/LC

- Matsui's algorithm [Mat94]
- Branch and bound
- Depth-first search algorithm
- Mixed-Integer Linear Programming (MILP)[MWGP11]
- Boolean Satisfiability (SAT/SMT)
- Constraint Programming (CP)
- Dedicated tools

MILP-based differential cryptanalysis

Mixed-Integer Linear Program (MILP)

- Linear Programming (LP) is a method to solve optimization problems

$$
\min -x_{1}+x_{2}-2 x_{3}+x_{4}-x_{5}
$$

$$
\begin{aligned}
& \text { subject to } \\
& x_{1}+x_{2} \leq 1 \\
& x_{1}-5 x_{2}+x_{3} \leq 2 \\
& 2 x_{3}+2 x_{4}-4 x_{5} \leq 1 \\
& x_{2}-2 x_{4}+x_{5} \leq 0 \\
& x \in\{0,1\}^{5}
\end{aligned}
$$

Mixed-Integer Linear Programming (MILP) allows some of the decision variables to be constrained to integers and others to be non-integers. Binary variables are common for crypto!

LP vs. MILP

Figure from Maria's slides

MILP solvers

- Hardness of MILP solving:
- Integer programming is NP-complete.
- Some well-known solver software:
- CPLEX
- Gurobi

These solvers can be used as stand-alone sotfware (.Ip input files) or as libraries with convenient interfaces (C/C++, python Sagemath, ...).

MILP-based differential cryptanalysisCounting the number of active S-boxes (\#AS) of 4round AESSearch for best differential trails

Counting \#AS of 4-round AES

- By the wide trail strategy, it is proved that there are at least 25 active S-boxes in 4-round AES.
- Let us prove it again with MILP.

Differential propagation of AES

Assign a binary variable $S_{r, i, j}$ for each state byte:

$$
S_{r, i, j}=1 \text { if it is active, otherwise } S_{r, i, j}=0
$$

- AK: input = output
- SB: input = output, cost $=\sum S_{r, i, j}$
- SR: reorder variables
- MC: w (input) $+w($ output $) \geq 5$ (the branch number)

Modeling of AES

Variables:

- $S_{r, i, j} \in\{0,1\}$: Is the S-box in row i column j in round r active?
- $M_{r, j} \in\{0,1\}$: Is the column j of MC in round r active?
- \#variables: $16^{*} 4+4 * 4=80$, \# inequality: $(1+8)^{*} 4 * 3+1=109$

Model:

$$
\min \sum_{r, i, j} S_{r, i, j}
$$

\% Find the minimal \#AS

\% For each MixColumns
$M_{r, j} \geq S_{r, i,(i+j) \% 4,} M_{r, j} \geq S_{r+1, i, j}$ for $i \in[0,3]$
$\sum_{i, j} S_{0, i, j} \geq 1$
$S_{r, i, j}, M_{r, j} \in\{0,1\}$ for $r, i, j \in[0,3]$

Modeling of AES

Variables:

- $S_{r, i, j} \in\{0,1\}$: Is the S-box in row i column j in round r active?
- $M_{r, j} \in\{0,1\}$: Is the column j of MC in round r active?
- \#variables: $16 * 4+4 * 4=80$, \# inequality: $2 * 4^{*} 3+1=25$

Model:

$$
\min \sum_{r, i, j} S_{r, i, j}
$$

\% Find the minimal \#AS

s.t. $\quad 5 \cdot M_{r, j} \leq \sum_{i} S_{r, i,(i+j) \% 4}+\sum_{i} S_{r+1, i, j} \leq 8 \cdot M_{r, j}$ \% For each MixColumns
$\sum_{i, j} S_{0, i, j} \geq 1$
\% At least one active byte in the input
$S_{r, i, j}, M_{r, j} \in\{0,1\}$ for $r, i, j \in[0,3]$
\% Domain

A note on how we model a simple crypto problem

- Construct the model for a specific operation by hand.
- The validity can be verified.
- \#variables and \#inequality may vary when a different modeling is used.

Goal:
Model a problem with a minimal number of variables and inequality.
(The solving time is not necessarily reduced when \#variables and \#inequality are minimal.)

Modeling of AES and solve with Gurobi

AES4r.lp

```
Minimize
S_r0_0_0 + S_r0_0_1 + ...+ S_r3_3_3
Subject To
S_rO_0_0 + S_rO_1_1 + S_rO_2_2 + S_rO_3_3 + S_r1_0_0 + S_r1_1_0 + S_r1_2_0 + S_r1_3_0-5 M_rO_0 >= 0
S_rO_0_0 + S_r0_1_1 + S_r0_2_2 + S_r0_3_3 + S_r1_0_0 + S_r1_1_0 + S_r1_2_0 + S_r1_3_0-8 M_r0_0 <= 0
S_rO_0_0 + S_rO_0_1 + S_rO_0_2 + S_rO_0_3 + S_rO_1_0 + S_rO_1_1 + S_r0_1_2 + S_rO_1_3 + S_rO_2_0 + S_r0_2_1 + S_rO_2_2 +
S_r0_2_3 + S_r0_3_0 + S_r0_3_1 + S_r0_3_2 + S_r0_3_3 >= 1
Binary
S_r0_0_0
gurobi> m = read("AES4r.lp")
gurobi> m.optimize()
gurobi> m.write("filename")
```


Modeling of AES and solve with Sagemath

```
#!/ usr/bin /env sage
rounds = range (4)
p = MixedIntegerLinearProgram ( maximization = False )
S = p. new_variable ( name ='sbox', binary = True )
M = p. new_variable ( name ='mcol', binary = True )
for r in rounds:
```

```
for j in [0..3]:
```

for j in [0..3]:
activecells = sum(S[r,i ,(i+j)%4] for i in [0..3]) + sum (S[r+1,i,j] for i in [0..3])
activecells = sum(S[r,i ,(i+j)%4] for i in [0..3]) + sum (S[r+1,i,j] for i in [0..3])
p. add_constraint (5*M[r,j] <= activecells <= 8*M[r,j])
p. add_constraint (5*M[r,j] <= activecells <= 8*M[r,j])
p.add_constraint(sum(S[0,i,j] for i in [0..3] for j in [0..3]) >= 1)
p.set_objective(=sum(S[r,i,j] for r in rounds for i in [0..3] for j in [0..3]))
p.solve ()
print(p.get_objective_value(), p.get_values(S))

```

\section*{MILP Example: counting \#AS of 4-round AES}
```

sage: \#!/ usr/bin /env sage
rounds = range (4)
p = MixedIntegerLinearProgram (maximization = False)
S = p.new_variable(name ='sbox', binary = True)
M = p.new_variable(name ='mcol', binary = True)
for r in rounds:
^Ifor j in [0..3]:
^I^Iactivecells = sum(S[r,i , (i+j)%4] for i in [0..3]) + sum (S[r+1,i,j] for i in [0..3])
^I^Ip. add_constraint (5*M[r,j]<= activecells <= 8*M[r,j])
p.add_constraint(sum(S[0,i,j] for i in [0..3] for j in [0..3]) >= 1)
p.set_objective(sum(S[r,i,j] for r in rounds for i in [0..3] for j in [0..3]))
p.solve()
print(p.get_objective_value(), p.get_values(S))
25.0
25.0 {(0, 0, 0): 1.0, (0, 1, 1): 1.0, (0, 2, 2): 1.0, (0, 3, 3): 1.0, (1, 0, 0): 0.0, (1, 1, 0): 0.0, (1, 2, 0):
0.0, (1, 3, 0): 1.0, (0, 0, 1): 0.0, (0, 1, 2): 0.0, (0, 2, 3): 0.0, (0, 3, 0): 0.0, (1, 0, 1): 0.0, (1, 1, 1):
0.0, (1, 2, 1): 0.0, (1, 3, 1): 0.0, (0, 0, 2): 0.0, (0, 1, 3): 0.0, (0, 2, 0): 0.0, (0, 3, 1): 0.0, (1, 0, 2):
0.0, (1, 1, 2): 0.0, (1, 2, 2): 0.0, (1, 3, 2): 0.0, (0, 0, 3): 0.0, (0, 1, 0): 0.0, (0, 2, 1): 0.0, (0, 3, 2):
0.0, (1, 0, 3): 0.0, (1, 1, 3): 0.0, (1, 2, 3): 0.0, (1, 3, 3): 0.0, (2, 0, 0): 0.0, (2, 1, 0): 0.0, (2, 2, 0):
0.0, (2, 3, 0): 0.0, (2, 0, 1): 1.0, (2, 1, 1): 1.0, (2, 2, 1): 1.0, (2, 3, 1): 1.0, (2, 0, 2): 0.0, (2, 1, 2):
0.0, (2, 2, 2): 0.0, (2, 3, 2): 0.0, (2, 0, 3): 0.0, (2, 1, 3): 0.0, (2, 2, 3): 0.0, (2, 3, 3):0.0, (3, 0, 0):
1.0, (3, 1, 0): 1.0, (3, 2, 0): 1.0, (3, 3, 0): 1.0, (3, 0, 1): 1.0, (3, 1, 1): 1.0, (3, 2, 1): 1.0, (3, 3, 1):
1.0, (3, 0, 2): 1.0, (3, 1, 2): 1.0, (3, 2, 2): 1.0, (3, 3, 2): 1.0, (3, 0, 3): 1.0, (3, 1, 3): 1.0, (3, 2, 3):
1.0, (3, 3, 3): 1.0, (4, 0, 0): 1.0, (4, 1, 0): 0.0, (4, 2, 0): 0.0, (4, 3, 0):0.0, (4, 0, 1): 1.0, (4, 1, 1):
0.0, (4, 2, 1): 0.0, (4, 3, 1): 0.0, (4, 0, 2): 1.0, (4, 1, 2): 0.0, (4, 2, 2): 0.0, (4, 3, 2): 0.0, (4, 0, 3):
1.0, (4, 1, 3):0.0, (4, 2, 3): 0.0, (4, 3, 3): 0.0}
sage:

```

MILP-based differential cryptanalysisCounting the number of active S-boxes (\#AS) of 4round AESSearch for best differential trails

\section*{Come back to the toy cipher}
\(S=\operatorname{SBox}([14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7])\)
- This cipher uses a bitwise linear layer.
- Cannot treat the S-box as identity.
- How to give a bitwise model for an S-box?
1. Convex hull computation [ \(\mathrm{SHW}+14\) ]
2. Logical computation [SHW+14, ST17]


\section*{1. Convex hull computation}
- Convex hull of a set of points in \(\mathbb{R}^{n}\) : the smallest convex set that contains these points.
\(\checkmark\) A convex hull can be represented by a set of linear inequalities
- Treat the set of all possible differential patterns of an S-box as a set of points in \(\mathbb{R}^{n}\).

- Then we can compute the linear inequalities representation of the set of differential patterns.

\section*{1. Convex hull computation}

\section*{Collect the set of all possible differentials}
\[
\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right]
\]
1. \(0 \rightarrow 0 \Rightarrow[0,0,0,0,0,0,0,0]\)
2. \(1 \rightarrow 3 \Rightarrow[1,0,0,0,1,1,0,0]\)
3. \(1 \rightarrow 7 \Rightarrow[1,0,0,0,1,1,1,0]\)
4. \(1 \rightarrow 9 \Rightarrow[1,0,0,0,1,0,0,1]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{16}{|c|}{Output Difference} \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\
\hline & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 2 & 4 & 0 & 4 & 2 & 0 & 0 \\
\hline n & 2 & 0 & 0 & 0 & 2 & 0 & 6 & 2 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 \\
\hline p & 3 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 4 & 2 & 0 & 2 & 0 & 0 & 4 \\
\hline u & 4 & 0 & 0 & 0 & 2 & 0 & 0 & 6 & 0 & 0 & 2 & 0 & 4 & 2 & 0 & 0 & 0 \\
\hline & 5 & 0 & 4 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 4 & 0 & 2 & 0 & 0 & 2 \\
\hline D & 6 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
\hline i & 7 & 0 & 0 & 2 & 2 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 4 \\
\hline f & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 4 & 0 & 4 & 2 & 2 \\
\hline f & 9 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 4 & 2 & 0 & 2 & 2 & 2 & 0 & 0 & 0 \\
\hline e & A & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 0 & 2 & 0 & 0 & 4 & 0 \\
\hline r & B & 0 & 0 & 8 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\
\hline n & C & 0 & 2 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 6 & 0 & 0 \\
\hline c & D & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 4 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\
\hline e & E & 0 & 0 & 2 & 4 & 2 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
\hline & F & 0 & 2 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 4 & 0 & 2 & 0 & 0 & 2 & 0 \\
\hline
\end{tabular}

\section*{Return 410 inequalities}
sage: Pattern_list \(=[[0,0,0,0,0,0,0,0],[0,0,0,1,0,0,1,1],[0,0,0,1\),
0,1,1,1], [0,0,0,1, 1,0,0,1], ...]
....: A_polyhedron = Polyhedron(Pattern_list)
....: for v in A_polyhedron.inequality_generator():
print(v)
An inequality \((0,-1,0,0,0,0,0,0) x+1>=0\)
An inequality \((-1,0,0,0,0,0,0,0) x+1>=0\)
An inequality \((0,0,-1,0,0,0,0,0) x+1>=0\)
An inequality \((0,-1,-1,-1,-1,0,-1,0) x+4>=0\)
An inequality \((0,0,0,-1,0,0,0,0) x+1>=0\)
An inequality \((-1,-1,-1,-1,1,0,1,0) x+3>=0\)
An inequality \((0,0,0,0,0,0,1,0) x+0>=0\)
An inequality \((0,0,0,0,-1,0,0,0) x+1>=0\)
An inequality \((-1,1,-1,-1,-1,0,0,-1) x+4>=0\)
An inequality \((0,0,0,0,0,0,0,-1) x+1>=0\)
An inequality \((-1,1,-1,0,-1,0,1,-1) x+3>=0\)
An inequality \((-1,-1,0,-1,1,0,1,-1) x+3>=0\)
An inequality \((1,-1,-1,0,-1,0,1,-1) x+3>=0\)
An inequality \((-1,-1,1,-1 .-1,0,1,0) x+3>=0\)

\section*{1. Convex hull computation}
- Too many inequalities, which will make the MILP problem too difficult to be solved in practical time
\(\checkmark\) There are redundant inequalities.
\(\checkmark\) Can we use fewer inequalities? Yes!

\section*{Return 410 inequalities}

An inequality \((0,-1,0,0,0,0,0,0) x+1>=0\)
An inequality \((-1,0,0,0,0,0,0,0) x+1>=0\)
An inequality \((0,0,-1,0,0,0,0,0) x+1>=0\)
An inequality \((0,-1,-1,-1,-1,0,-1,0) x+4>=0\)
An inequality \((0,0,0,-1,0,0,0,0) x+1>=0\)
An inequality \((-1,-1,-1,-1,1,0,1,0) x+3>=0\)
An inequality \((0,0,0,0,0,0,1,0) x+0>=0\)
An inequality \((0,0,0,0,-1,0,0,0) x+1>=0\)
An inequality \((-1,1,-1,-1,-1,0,0,-1) x+4>=0\)
An inequality \((0,0,0,0,0,0,0,-1) x+1>=0\)
An inequality \((-1,1,-1,0,-1,0,1,-1) x+3>=0\)
An inequality \((-1,-1,0,-1,1,0,1,-1) x+3>=0\)
An inequality \((1,-1,-1,0,-1,0,1,-1) x+3>=0\)
An inequality \((-1,-1,1,-1,-1,0,1,0) x+3>=0\)

\section*{1. Convex hull computation}

Select a smaller set of inequalities via a greedy algorithm


\section*{1. Convex hull computation}
- A set of 25 inequalities can be selected to model the DDT
\begin{tabular}{ll}
{\(\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right]\)} \\
\((-2,-2,0,1,3,4,4,1,0)\) \\
\((4,1,0,1,4,-2,3,-2,0)\) & \(-2 x_{0}-2\) \\
\((3,4,1,3,-2,1,-2,1,0)\) & \(x_{1}+0 x_{2}+x_{3}+3 y_{0}+4 y_{1}+4 y_{2}+y_{3} \geq 0\) \\
\((-1,4,-1,-1,3,-2,4,5,0)\) & \((-1,1,2,1,-1,2,-1,2,1)\) \\
\((2,-3,-1,-3,-2,1,-1,-1,8)\) & \((2,1,2,3,-2,-1,-1,-2,3)\) \\
\((-3,-1,-4,-2,-3,2,-4,-1,14)\) & \((-3,2,-1,-2,-3,1,-1,-2,9)\) \\
\((-1,-1,1,2,-3,-3,3,-2,7)\) & \((3,3,-1,-1,3,0,-1,-1,0)\) \\
\((1,-1,2,-1,1,2,-2,0,2)\) & \((-2,-1,-1,1,-2,-1,-2,2,6)\) \\
\((-1,0,1,0,1,-1,-1,0,2)\) & \((-1,-1,-1,1,-1,2,-2,-1,6)\) \\
\((1,-2,-2,-1,-1,-2,-3,2,8)\) & \((-1,-1,0,-1,1,0,1,-1,3)\) \\
\((1,1,-2,-2,3,3,-2,3)\) & \((-1,0,0,1,1,-1,-1,-1,3)\) \\
\((-2,-2,-2,-1,-3,-1,3,1,6)\) & \((-1,2,-1,1,2,2,0,2,0)\) \\
\((2,-2,-2,3,1,3,3,1,0)\) & \((2,2,2,-1,-1,-1,3,3,0)\) \\
& \((0,0,-1,-1,-1,-1,-1,-1,5)\) \\
\((3,-3,1,-3,-1,-1,-2,2,7)\)
\end{tabular}

\section*{2. Logical computation}

Basic Idea: remove all impossible differentials for the S-box
\[
\begin{aligned}
& V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right] \\
& \text { Eg. } 6 \leftrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0] \boxtimes \\
& x_{0}-x_{1}-x_{2}+x_{3}+y_{0}+y_{1}-y_{2}+y_{3} \geq-2
\end{aligned}
\]

Let \(q(a)= \begin{cases}1, & a=0 \\ -1, & a=1\end{cases}\)
Then to remove \(a=[0,1,1,0,0,0,1,0]\) via
\[
\sum q(a[i]) \cdot V[i] \geq 1-H_{w}(a)
\]


Changing any bit of \(a\) will increase the value of RHS, meaning that any other vector does not violate this inequality.

\section*{2. Logical computation}

Basic Idea: remove all impossible differentials for the S-box
\[
\begin{aligned}
& V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right] \\
& \text { Eg. } 6 \nrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0] \boxtimes \\
& x_{0}-x_{1}-x_{2}+x_{3}+y_{0}+y_{1}-y_{2}+y_{3} \geq-2 \\
& 6 \nrightarrow 6 \Rightarrow[0,1,1,0,0,1,1,0] \boxtimes \\
& x_{0}-x_{1}-x_{2}+x_{3}+y_{0}-y_{1}-y_{2}+y_{3} \geq-3
\end{aligned}
\]

However, these two cases can be represented as
\[
[0,1,1,0,0, *, 1,0] \text { 区 }
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{16}{|c|}{Output Difference} \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\
\hline & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 2 & 4 & 0 & 4 & 2 & 0 & 0 \\
\hline n & 2 & 0 & 0 & 0 & 2 & 0 & 6 & 2 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 \\
\hline p & 3 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 4 & 2 & 0 & 2 & 0 & 0 & 4 \\
\hline + & 4 & 0 & 0 & 0 & 2 & 0 & 0 & 6 & 0 & 0 & 2 & 0 & 4 & 2 & 0 & 0 & 0 \\
\hline & 5 & 0 & 4 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 4 & 0 & 2 & 0 & 0 & 2 \\
\hline D & 6 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
\hline i & 7 & 0 & 0 & 2 & 2 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 4 \\
\hline f & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 4 & 0 & 4 & 2 & 2 \\
\hline f & 9 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 4 & 2 & 0 & 2 & 2 & 2 & 0 & 0 & 0 \\
\hline e & A & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 0 & 2 & 0 & 0 & 4 & 0 \\
\hline r & B & 0 & 0 & 8 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\
\hline n & C & 0 & 2 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 6 & 0 & 0 \\
\hline c & D & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 4 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\
\hline e & E & 0 & 0 & 2 & 4 & 2 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
\hline & F & 0 & 2 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 4 & 0 & 2 & 0 & 0 & 2 & 0 \\
\hline
\end{tabular}

And removed by
\[
x_{0}-x_{1}-x_{2}+x_{3}+y_{0}-y_{2}+y_{3} \geq-2
\]

\section*{Full model}

\section*{Variables:}
- \(S_{r, i} \in\{0,1\}\) : Is the S-box \(i\) in round \(r\) active?
- \(x_{r, i, j} \in\{0,1\}\) : Is the \(j\)-th bit of S -box \(i\) in round \(r\) active?
- \#variables: \(16^{*}(\mathrm{R}+1)+4^{*} \mathrm{R}\), \# inequality: \(2^{*} 4^{*} \mathrm{R}+4^{*} \mathrm{R}^{*} \mathrm{~T}, \mathrm{~T}=25\)
\[
\min \sum_{r, i} S_{r, i}
\]
\% Find the minimal \#AS
s.t. \(\quad S_{r, i} \leq \sum_{j} x_{r, i, j} \leq 4 \cdot S_{r, i}\)
\% For each S-box
25 inequalities for input-output patterns
\[
\sum_{i} S_{0, i} \geq 1
\]
\[
S_{r, i}, x_{r, i, j} \in\{0,1\} \text { for } r \in[0, \mathrm{R}), i, \mathrm{j} \in[0,3]
\]

\section*{Find a minimal set [ST17]}

The greedy algorithm does not guarantee a minimal set to be returned.
Minimize the number of inequalities via MILP
Introduce variables \(z_{i}\) to denote whether inequality \(i\) is selected or not.
\[
\operatorname{minimize} \sum_{i=1}^{N} z_{i}
\]
\(\begin{aligned} z_{2}+z_{8}+z_{N} \geq 1, & \text { as the constaint for } R_{0}, \\ z_{2}+z_{3}+z_{7} \geq 1, & \text { as the constaint for } R_{1},\end{aligned}\)
\(z_{2}+z_{3}+z_{7} \geq 1\),
\(z_{1}+z_{3}+z_{4}+z_{9} \geq 1\),
as the constaint for \(R_{1}\),
as the constaint for \(R_{|\mathcal{R}|-1}\).

Impossible patterns which should be removed

Patterns in \(\mathcal{R}\)
\begin{tabular}{lccccccccccccc} 
& \(R_{0}\) & \(R_{1}\) & \(R_{2}\) & \(R_{3}\) & \(R_{4}\) & \(R_{5}\) & \(R_{6}\) & \(R_{7}\) & \(R_{8}\) & \(R_{9}\) & \(\cdots\) & \(R_{|\mathcal{R}|-1}\) \\
\hline Inequality 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & \(\cdots\) & 1 \\
Inequality 2 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & \(\cdots\) & 0 \\
Inequality 3 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \(\cdots\) & 1 \\
Inequality 4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \(\cdots\) & 1 \\
Inequality 5 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \(\cdots\) & 0 \\
Inequality 6 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\cdots\) & 0 \\
Inequality 7 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \(\cdots\) & 0 \\
Inequality 8 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & \(\cdots\) & 0 \\
Inequality 9 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \(\cdots\) & 1
\end{tabular}

\section*{What else MILP can do}
- Search for other distinguishers
- Impossible differential
- Zero-correlation trail
- Division trail
- Boomerang distinguishers
- Demirci-Selcuk MitM attack
- Cube attack
-...

\section*{Limitation}
- Not so useful for complex bitwise descriptions and characteristics
\(\square\) Language of linear inequalities is not so natural for crypto
\(\square\) Too many integer variables lead to bad solver performance

SAT-based Cryptanalysis

\section*{SAT problem}
－The Boolean satisfiability problem（SAT）considers the satisfiability of a given Boolean formula．
－It was shown that the problem is NP－complete．However，modern SAT solvers based on backtracking search can solve problems of practical interest with millions of variables．
－Conjunctive Normal Form（CNF，合取范式）
－EXample solvers：

－MiniSAT，CryptoMiniSAT，Plingeling，

\section*{Model DDT of the S-box}

Basic Idea: remove all impossible differentials for the S-box
\[
\begin{gathered}
V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right] \\
\text { Eg. } 6 \nrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0] \text { 囚 } \\
x_{0} \vee \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \vee y_{0} \vee y_{1} \vee \bar{y}_{2} \vee y_{3} \quad \text { (= true) }
\end{gathered}
\]

That is, remove \(a=[0,1,1,0,0,0,1,0]\) via
\[
\bigvee(V[i] \oplus a[i]) \quad(=\text { true })
\]


Changing any bit of \(a\) will make the clause true, meaning that any other vector does not violate this clause.

\section*{Model DDT of the S－box}

Basic Idea：remove all impossible differentials for the S－box
\[
\begin{aligned}
& V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right] \\
& \text { Eg. } 6 \nrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0] \text { 区 } \\
& x_{0} \vee \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \vee y_{0} \vee y_{1} \vee \bar{y}_{2} \vee y_{3} \\
& 6 \nrightarrow 6 \Rightarrow[0,1,1,0,0,1,1,0] \text { 区 } \\
& x_{0} \vee \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \vee y_{0} \vee \bar{y}_{1} \vee \bar{y}_{2} \vee y_{3}
\end{aligned}
\]

However，these two cases can be represented as
\[
[0,1,1,0,0, *, 1,0] \text { 囚 }
\]


And removed by
\[
x_{0} \vee \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \vee y_{0} \vee \bar{y}_{2} \vee y_{3}
\]

\section*{Model DDT of the S－box}

Take the activeness into account：
\[
\begin{aligned}
& V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}, S_{r, i}\right] \\
& \text { Eg. } 6 \nrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0,0] \text { 区 } \\
& \text { [0,1,1,0, 0,0,1,0, 1] 区 } \\
& 6 \rightarrow 6 \Rightarrow[0,1,1,0,0,1,1,0,0] \text { 区 } \\
& {[0,1,1,0,0,1,1,0,1] \text { 区 }}
\end{aligned}
\]

\section*{Simplify the product of sums}
- Quine-McCluskey (QM) algorithm \& Espresso algorithm.
- Software: Logic Friday.

\section*{Use Logic Friday}
- Input the truth table of a Boolean function via
- Typing all the entries by hand
- Importing from a cvs file
- Click ‘Operation-> minimize'
- Limitation: cannot take more than 16 input variables.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\times 0\) & \(\times 1\) & x2 & x3 & \(\times 4\) & y0 & y1 & y2 & y 3 & y 4 & => & & Imported from file: \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 1 &  \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & & 1 & \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & & 1 & \(\mathrm{x}^{\prime}{ }^{\prime} \mathrm{x} 3 \mathrm{x}^{4} \mathrm{y} 0^{\prime} \mathrm{y} 1 \mathrm{y}^{\prime}{ }^{\prime} \mathrm{y} 3 \mathrm{y}^{4}+\mathrm{x} 0{ }^{\prime} \mathrm{x} 1^{\prime} \mathrm{x} 2 \mathrm{x} 3\) \\
\hline 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & & 1 &  \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & & 1 &  \\
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & & 1 & \(\mathrm{y} 3 \mathrm{y}^{4}{ }^{\prime}+\mathrm{x} 0{ }^{\prime} \mathrm{x} 1{ }^{\prime} \mathrm{x} 2 \mathrm{x} 3 \mathrm{x}^{4} \mathrm{y} 0 \mathrm{y} 1^{\prime} \mathrm{y}^{2} \mathrm{y} 3 \mathrm{y} 4+\) \\
\hline 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & & 0 & & 1 &  \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & & 1 &  \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & & 1 & x 4 ' y 0 ' \(\mathrm{y} 1{ }^{\prime} \mathrm{y} 2\) ' \(\mathrm{y} 3 \mathrm{y}^{4}+\mathrm{x} 0\) ' x 1 x 2 ' x 3 x 4 y 0 ' \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & & 1 &  \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & & 1 & x0' x1 x2 x3 x4' y0' y1 y2 y3 y \(4+\mathrm{x} 0^{\prime} \mathrm{x} 1 \mathrm{x}^{2}\) \\
\hline 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & & 1 &  \\
\hline 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & & 1 & y1' y2' y3 y4' + x0 x1' x2' x3' \(\mathrm{x}^{\prime} 4 \mathrm{y} 0 \mathrm{y} 1{ }^{\prime} \mathrm{y} 2\) \\
\hline 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & & 1 & \(\mathrm{y}^{\prime} \mathrm{y}^{4}+\mathrm{x} 0 \mathrm{x} 1{ }^{\prime \prime} \mathrm{x} 2{ }^{\prime} \mathrm{x} 3 \mathrm{x}^{\prime}{ }^{\prime} \mathrm{y} 0 \mathrm{y} 1 \mathrm{y}^{\prime} \mathrm{l}^{\prime} \mathrm{y}^{\prime} \mathrm{y}^{4}{ }^{\prime}+\) \\
\hline 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & & 1 &  \\
\hline 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & & 1 &  \\
\hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & & 1 &  \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & & 1 &  \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & & 1 &  \\
\hline 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & & 1 & y0 y1' y2' y3' y \({ }^{\prime}{ }^{\prime}+\mathrm{x} 0 \mathrm{x} 1 \mathrm{x}^{\prime}{ }^{\prime} \mathrm{x} 3 \mathrm{x}^{4} \mathrm{y} 0 \mathrm{y} 1^{\prime}\) \\
\hline 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & & 1 &  \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & & 1 & \(\mathrm{x} 0 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3{ }^{\prime} \mathrm{x} 4 \mathrm{y} 0 \mathrm{y} 1 \mathrm{y}^{\prime} \mathrm{y}^{\prime} '^{\prime} \mathrm{y}^{4}+\mathrm{x} 0 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3\) \\
\hline 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & & &  \\
\hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & & 1 & - \\
\hline \multicolumn{13}{|r|}{Minimized Product of Sums:} \\
\hline
\end{tabular}

\section*{Convert integer constraints into CNF}
- \(\sum_{r, i} S_{r, i} \leq w\), i.e., set the number of active S-boxes to \(\leq w\).
- Employ the cardinality constraint.
- Cost \(2 w n+n-3 w-1\) clauses.
- when \(n=16, w=4\) it requires 131 clauses

Cardinality constraint:
\[
\begin{aligned}
& \sum_{\xi=0}^{\mu-1} p_{\xi} \leqslant w, w \geqslant 1 \\
& \left\{\begin{array}{l}
\overline{p_{0}} \vee u_{0,0}=1 \\
\overline{u_{0, j}}=1 \\
\overline{p_{i}} \vee u_{i, 0}=1 \\
\overline{u_{i-1,0}} \vee u_{i, 0}=1 \\
\overline{p_{i}} \vee \overline{u_{i-1, j-1}} \vee u_{i, j}=1 \\
\overline{u_{i-1, j}} \vee u_{i, j}=1 \\
\overline{p_{i}} \vee \overline{u_{i-1}, w-1}=1 \\
\overline{p_{\mu-1}} \vee \overline{u_{\mu-2, w-1}}=1
\end{array}\right. \\
& u_{i, j}(0 \leqslant i \leqslant \mu-2,0 \leqslant j \leqslant w-1)
\end{aligned}
\]
\[
\begin{aligned}
& \lambda=\underline{h} \\
& \text { MILP vs. SAT }
\end{aligned}
\]
\[
\begin{aligned}
& \left(\underline{E_{t}}\right)=2 \cos \gamma_{1} \cos \gamma_{2}
\end{aligned}
\]

\section*{MILP vs. SAT on modeling DDT}

Basic Idea: remove all impossible differentials for the S-box
\[
\begin{array}{c|c}
V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right] & V=\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right] \\
\text { Eg. } 6 \nrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0] \text { 区 } & \text { Eg. } 6 \nrightarrow 4 \Rightarrow[0,1,1,0,0,0,1,0] \text { 区 } \\
x_{0}-x_{1}-x_{2}+x_{3}+y_{0}+y_{1}-y_{2}+y_{3} \geq-2 & x_{0} \vee \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \vee y_{0} \vee y_{1} \vee \bar{y}_{2} \vee y_{3}=1
\end{array}
\]

Changing any bit of \(a\) will increase the value of RHS, meaning that any other vector does not violate this inequality.

Changing any bit of \(a\) will make the clause true, meaning that any other vector does not violate this clause.

Obtain minimized MILP models for DDT via the minimized product-of-sums representation.

赛题解读
\[
\begin{aligned}
& \lambda=\frac{\ln _{2}}{T} F_{h}=S h \rho g g_{f_{0}}^{2 m_{1}} \sigma=\stackrel{r}{\sigma}=\vec{F} d \cos \alpha=s^{r} \frac{F_{n}}{R}
\end{aligned}
\]

\section*{题目二}

\section*{\(Z_{2}^{n}\) 上 非空子集线性不等式完全刻画问题}

例如，\(n=3, A=\{(000),(101),(011),(110)\}\) 。我们可以构造一组线性
不等式组 \(L\) ：
\[
\left\{\begin{array}{c}
x_{1}+x_{2} \geq x_{3} \\
x_{1}+x_{3} \geq x_{2} \\
x_{2}+x_{3} \geq x_{1} \\
x_{1}+x_{2}+x_{3} \leq 2
\end{array}\right.
\]

其由 4 个不等式组成。容易验证，上述线性不等式组 \(L\) 关于 \(\left(x_{3}, x_{2}, x_{1}\right)\)
的解集恰好为 \(A\) 。
\(c_{j}=\min \left\{l_{1, j}, l_{2, j}, \ldots, l_{m, j}, r_{j}\right\}\),

表1每道小题的参数设置
\begin{tabular}{|c|c|c|}
\hline 小题序号 & \(\boldsymbol{n}\) & 元素个数 \\
\hline 1 & 6 & 29 \\
\hline 2 & 8 & 97 \\
\hline 3 & 10 & 317 \\
\hline 4 & 12 & 2017 \\
\hline 5 & 14 & 6361 \\
\hline 6 & 16 & 32386 \\
\hline 7 & 20 & 491144 \\
\hline 8 & 24 & 8115092 \\
\hline
\end{tabular}

表 2 每道小题权重分值 \(\delta_{j}\) 和不等式个数参考值 \(\boldsymbol{r}_{\boldsymbol{j}}\) 的取值
\begin{tabular}{|c|c|c|}
\hline 小题序号 \(\boldsymbol{j}\) & \(\boldsymbol{\delta}_{\boldsymbol{j}}\) & \(\boldsymbol{r}_{\boldsymbol{j}}\) \\
\hline 1 & 100 & 8 \\
\hline 2 & 200 & 16 \\
\hline 3 & 200 & 30 \\
\hline 4 & 400 & 180 \\
\hline 5 & 600 & 2300 \\
\hline 7 & 1000 & 576000 \\
\hline 8 & & \\
\hline
\end{tabular}

要求：完整刻画，使用的不等式尽可能少。

\section*{举例：第一小题}
- \(n=6,29\) 个元素
- 采用两种方法
\[
0009 \text { OB OD OF } 121316
\]
－Convex hull computation＋greedy algorithm
－Logic Friday
q_1_n=6.txt
\[
17 \text { 19 1A 1D 1E } 242526
\]
\[
2729 \text { 2B 2C 2E } 323334
\]
\[
3539 \text { 3A 3C 3F }
\]
－The number of inequalities is 14 ．Minimized．

\section*{Summary}
－MILP－based cryptanalysis
－SAT－based cryptanalysis
－应用于密码数学挑战赛题目二
－Questions？

\section*{Reference}
[Mat94] Mitsuru Matsui. On Correlation Between the Order of S-boxes and the Strength of DES. Advances in Cryptology - EUROCRYPT '94. Vol. 950. LNCS. Springer, 1994, pp. 366-375.
[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, Bart Preneel: Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming. Inscrypt 2011: 57-76
[ST17] Yu Sasaki, Yosuke Todo: New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search. SECITC 2017: 150-165
[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Ling Song: Automatic Security Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. ASIACRYPT (1) 2014: 158-178```

